基于模糊聚类和多维标度方法的非线性成分分析

Eriko Ikeda, T. Imaoka, H. Ichihashi, T. Miyoshi
{"title":"基于模糊聚类和多维标度方法的非线性成分分析","authors":"Eriko Ikeda, T. Imaoka, H. Ichihashi, T. Miyoshi","doi":"10.1109/IJCNN.1999.833473","DOIUrl":null,"url":null,"abstract":"This paper proposes a new strategy of nonlinear component analysis for dimensionality reduction and representation of multidimensional data sets. The proposed procedure consists of two steps: one is to partition the data set into several clusters based on the local distances between two points, and the other is to project the obtained sub-manifolds on a low dimensional linear space by the multidimensional scaling methods.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonlinear component analysis by fuzzy clustering and multidimensional scaling methods\",\"authors\":\"Eriko Ikeda, T. Imaoka, H. Ichihashi, T. Miyoshi\",\"doi\":\"10.1109/IJCNN.1999.833473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new strategy of nonlinear component analysis for dimensionality reduction and representation of multidimensional data sets. The proposed procedure consists of two steps: one is to partition the data set into several clusters based on the local distances between two points, and the other is to project the obtained sub-manifolds on a low dimensional linear space by the multidimensional scaling methods.\",\"PeriodicalId\":157719,\"journal\":{\"name\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1999.833473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.833473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对多维数据集的降维和表示问题,提出了一种新的非线性分量分析策略。该方法包括两个步骤:一是根据两点之间的局部距离将数据集划分为多个聚类,二是通过多维尺度方法将得到的子流形投影到低维线性空间上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear component analysis by fuzzy clustering and multidimensional scaling methods
This paper proposes a new strategy of nonlinear component analysis for dimensionality reduction and representation of multidimensional data sets. The proposed procedure consists of two steps: one is to partition the data set into several clusters based on the local distances between two points, and the other is to project the obtained sub-manifolds on a low dimensional linear space by the multidimensional scaling methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信