连续目标跟踪器的跟踪指数

Christopher Lin, P. Kalata
{"title":"连续目标跟踪器的跟踪指数","authors":"Christopher Lin, P. Kalata","doi":"10.23919/ACC.1992.4792197","DOIUrl":null,"url":null,"abstract":"An optimal filtering solution is presented for the continuous time target tracking problem. The Tracking Index (the target maneuverability to the sensor measurement uncertainty ratio) is found to have fundamental role in the optimal steady-state solution. The Tracking Index solution yields a closed form, consistent set of tracking gains, relationships, and performances. The resulting continuous time stochastic regulators are termed ¿c-ßc or ¿c-ßc-¿c target trackers (depending on the tracking order) [15]. For discrete time measurement, the discrete target trackers are defined based on the discrete Tracking Index [10]; however, the process presented in this paper deals with specific models of target maneuvers: velocity, acceleration and jerk. The Tracking Index is dependent on fundamental characteristics of the tracking problem: the track period, measurement noise, target maneuverability and tracker order.","PeriodicalId":297258,"journal":{"name":"1992 American Control Conference","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The Tracking Index for Continuous Target Trackers\",\"authors\":\"Christopher Lin, P. Kalata\",\"doi\":\"10.23919/ACC.1992.4792197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An optimal filtering solution is presented for the continuous time target tracking problem. The Tracking Index (the target maneuverability to the sensor measurement uncertainty ratio) is found to have fundamental role in the optimal steady-state solution. The Tracking Index solution yields a closed form, consistent set of tracking gains, relationships, and performances. The resulting continuous time stochastic regulators are termed ¿c-ßc or ¿c-ßc-¿c target trackers (depending on the tracking order) [15]. For discrete time measurement, the discrete target trackers are defined based on the discrete Tracking Index [10]; however, the process presented in this paper deals with specific models of target maneuvers: velocity, acceleration and jerk. The Tracking Index is dependent on fundamental characteristics of the tracking problem: the track period, measurement noise, target maneuverability and tracker order.\",\"PeriodicalId\":297258,\"journal\":{\"name\":\"1992 American Control Conference\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1992 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.1992.4792197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1992 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1992.4792197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

针对连续时间目标跟踪问题,提出了一种最优滤波方法。发现跟踪指数(目标机动性与传感器测量不确定度的比值)在最优稳态解中起着根本作用。跟踪索引解决方案生成一组封闭的、一致的跟踪收益、关系和性能。所得到的连续时间随机调节器被称为¿c-ßc或¿c-ßc-¿c目标跟踪器(取决于跟踪顺序)[15]。对于离散时间测量,基于离散跟踪指数定义离散目标跟踪器[10];然而,本文提出的过程涉及目标机动的具体模型:速度、加速度和加速度。跟踪指标取决于跟踪问题的基本特征:跟踪周期、测量噪声、目标可操作性和跟踪器顺序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Tracking Index for Continuous Target Trackers
An optimal filtering solution is presented for the continuous time target tracking problem. The Tracking Index (the target maneuverability to the sensor measurement uncertainty ratio) is found to have fundamental role in the optimal steady-state solution. The Tracking Index solution yields a closed form, consistent set of tracking gains, relationships, and performances. The resulting continuous time stochastic regulators are termed ¿c-ßc or ¿c-ßc-¿c target trackers (depending on the tracking order) [15]. For discrete time measurement, the discrete target trackers are defined based on the discrete Tracking Index [10]; however, the process presented in this paper deals with specific models of target maneuvers: velocity, acceleration and jerk. The Tracking Index is dependent on fundamental characteristics of the tracking problem: the track period, measurement noise, target maneuverability and tracker order.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信