一种基于无源Wi-Fi的城市流量监测系统

M. Bertolusso, G. Pettorru, M. Spanu, M. Fadda, M. Sole, M. Anedda, D. Giusto
{"title":"一种基于无源Wi-Fi的城市流量监测系统","authors":"M. Bertolusso, G. Pettorru, M. Spanu, M. Fadda, M. Sole, M. Anedda, D. Giusto","doi":"10.1109/IAICT55358.2022.9887478","DOIUrl":null,"url":null,"abstract":"This paper presents an innovative vehicle monitoring system based on Wi-Fi sniffing devices and real-time data processing using machine learning techniques. Our solution involves the construction of a neural network-based multiclass classifier that can classify the incoming Wi-Fi signal from many sources based on the received signal strength. The solution was carried out by training the neural network to predict different output classes corresponding to different vehicular (0-30Km/h,30-60Km/h, 60-90Km/h, 90-120Km/h) and several pedestrian speed ranges among 0-15Km/h.","PeriodicalId":154027,"journal":{"name":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A passive Wi-Fi based monitoring system for urban flows detection\",\"authors\":\"M. Bertolusso, G. Pettorru, M. Spanu, M. Fadda, M. Sole, M. Anedda, D. Giusto\",\"doi\":\"10.1109/IAICT55358.2022.9887478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an innovative vehicle monitoring system based on Wi-Fi sniffing devices and real-time data processing using machine learning techniques. Our solution involves the construction of a neural network-based multiclass classifier that can classify the incoming Wi-Fi signal from many sources based on the received signal strength. The solution was carried out by training the neural network to predict different output classes corresponding to different vehicular (0-30Km/h,30-60Km/h, 60-90Km/h, 90-120Km/h) and several pedestrian speed ranges among 0-15Km/h.\",\"PeriodicalId\":154027,\"journal\":{\"name\":\"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAICT55358.2022.9887478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT55358.2022.9887478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于Wi-Fi嗅探设备和使用机器学习技术进行实时数据处理的创新车辆监控系统。我们的解决方案涉及构建一个基于神经网络的多类分类器,该分类器可以根据接收到的信号强度对来自多个源的传入Wi-Fi信号进行分类。通过训练神经网络来预测不同车辆(0-30Km/h、30-60Km/h、60-90Km/h、90-120Km/h)和0-15Km/h的行人速度区间对应的不同输出类,从而实现该方案的求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A passive Wi-Fi based monitoring system for urban flows detection
This paper presents an innovative vehicle monitoring system based on Wi-Fi sniffing devices and real-time data processing using machine learning techniques. Our solution involves the construction of a neural network-based multiclass classifier that can classify the incoming Wi-Fi signal from many sources based on the received signal strength. The solution was carried out by training the neural network to predict different output classes corresponding to different vehicular (0-30Km/h,30-60Km/h, 60-90Km/h, 90-120Km/h) and several pedestrian speed ranges among 0-15Km/h.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信