等平均曲率曲面的例子

M. Cheshkova
{"title":"等平均曲率曲面的例子","authors":"M. Cheshkova","doi":"10.5922/0321-4796-2019-50-17","DOIUrl":null,"url":null,"abstract":"A surface in E3 is called parallel to the surface M if it consists of the ends of constant length segments, laid on the normals to the surfaces M at points of this surface. The tangent planes at the corresponding points will be parallel. For surfaces in E3 the theorem of Bonnet holds: for any surface M that has constant positive Gaussian curvature, there exists a surface parallel to it with a constant mean curvature. Using Bonnet's theorem for a surfaces of revolution of constant positive Gaussian curvature, surfaces of constant mean curvature are constructed. It is proved that they are also surfaces of revolution. A family of plane curvature lines (meridians) is described by means of elliptic integrals. The surfaces of constant Gaussian curvature are also described by means of elliptic integrals. Using the mathematical software package, the surfaces under consideration are constructed.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examples of surfaces of constant mean curvature\",\"authors\":\"M. Cheshkova\",\"doi\":\"10.5922/0321-4796-2019-50-17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A surface in E3 is called parallel to the surface M if it consists of the ends of constant length segments, laid on the normals to the surfaces M at points of this surface. The tangent planes at the corresponding points will be parallel. For surfaces in E3 the theorem of Bonnet holds: for any surface M that has constant positive Gaussian curvature, there exists a surface parallel to it with a constant mean curvature. Using Bonnet's theorem for a surfaces of revolution of constant positive Gaussian curvature, surfaces of constant mean curvature are constructed. It is proved that they are also surfaces of revolution. A family of plane curvature lines (meridians) is described by means of elliptic integrals. The surfaces of constant Gaussian curvature are also described by means of elliptic integrals. Using the mathematical software package, the surfaces under consideration are constructed.\",\"PeriodicalId\":114406,\"journal\":{\"name\":\"Differential Geometry of Manifolds of Figures\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry of Manifolds of Figures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5922/0321-4796-2019-50-17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/0321-4796-2019-50-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果E3中的曲面由固定长度的线段的末端组成,并且在该曲面上的点与曲面M的法线相连,则称为与曲面M平行。对应点处的切平面平行。对于E3中的曲面,Bonnet定理成立:对于任意曲面M,它具有恒定的正高斯曲率,存在一个与它平行的具有恒定平均曲率的曲面。利用常正高斯曲率旋转曲面的Bonnet定理,构造了常平均曲率曲面。证明了它们也是公转面。一组平面曲率线(子午线)是用椭圆积分来描述的。用椭圆积分的方法描述了常高斯曲率曲面。利用数学软件包,构造了所考虑的曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examples of surfaces of constant mean curvature
A surface in E3 is called parallel to the surface M if it consists of the ends of constant length segments, laid on the normals to the surfaces M at points of this surface. The tangent planes at the corresponding points will be parallel. For surfaces in E3 the theorem of Bonnet holds: for any surface M that has constant positive Gaussian curvature, there exists a surface parallel to it with a constant mean curvature. Using Bonnet's theorem for a surfaces of revolution of constant positive Gaussian curvature, surfaces of constant mean curvature are constructed. It is proved that they are also surfaces of revolution. A family of plane curvature lines (meridians) is described by means of elliptic integrals. The surfaces of constant Gaussian curvature are also described by means of elliptic integrals. Using the mathematical software package, the surfaces under consideration are constructed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信