计算一般随机过程条件概率的新方法

Fabian Wickborn, Claudia Isensee, T. Simon, S. Lazarova-Molnar, G. Horton
{"title":"计算一般随机过程条件概率的新方法","authors":"Fabian Wickborn, Claudia Isensee, T. Simon, S. Lazarova-Molnar, G. Horton","doi":"10.1109/ANSS.2006.7","DOIUrl":null,"url":null,"abstract":"In this paper, hidden Markov model algorithms are considered as a method for computing conditional properties of continuous-time stochastic simulation models. The goal is to develop an algorithm that adapts known hidden Markov model algorithms for use with proxel-based simulation. It is shown how the forward- and Viterbi-algorithms can be directly integrated in the proxel-method. The possibility of integrating the more complex Baum-Welch-algorithm is theoretically addressed. Experiments are conducted to determine the practicability of the new approach and to illustrate the type of analysis that is possible.","PeriodicalId":308739,"journal":{"name":"39th Annual Simulation Symposium (ANSS'06)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A new approach for computing conditional probabilities of general stochastic processes\",\"authors\":\"Fabian Wickborn, Claudia Isensee, T. Simon, S. Lazarova-Molnar, G. Horton\",\"doi\":\"10.1109/ANSS.2006.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, hidden Markov model algorithms are considered as a method for computing conditional properties of continuous-time stochastic simulation models. The goal is to develop an algorithm that adapts known hidden Markov model algorithms for use with proxel-based simulation. It is shown how the forward- and Viterbi-algorithms can be directly integrated in the proxel-method. The possibility of integrating the more complex Baum-Welch-algorithm is theoretically addressed. Experiments are conducted to determine the practicability of the new approach and to illustrate the type of analysis that is possible.\",\"PeriodicalId\":308739,\"journal\":{\"name\":\"39th Annual Simulation Symposium (ANSS'06)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"39th Annual Simulation Symposium (ANSS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANSS.2006.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"39th Annual Simulation Symposium (ANSS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANSS.2006.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文考虑隐马尔可夫模型算法作为计算连续时间随机仿真模型条件性质的一种方法。目标是开发一种算法,该算法适应已知的隐马尔可夫模型算法,用于基于proxel的仿真。说明了如何将前向算法和维特比算法直接集成到代理算法中。从理论上解决了整合更复杂的baum - welch算法的可能性。进行了实验以确定新方法的实用性,并说明了可能的分析类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new approach for computing conditional probabilities of general stochastic processes
In this paper, hidden Markov model algorithms are considered as a method for computing conditional properties of continuous-time stochastic simulation models. The goal is to develop an algorithm that adapts known hidden Markov model algorithms for use with proxel-based simulation. It is shown how the forward- and Viterbi-algorithms can be directly integrated in the proxel-method. The possibility of integrating the more complex Baum-Welch-algorithm is theoretically addressed. Experiments are conducted to determine the practicability of the new approach and to illustrate the type of analysis that is possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信