{"title":"耦合三端口器件的去嵌入","authors":"Yuandong Guo, Bo Pu, Donghyun Kim, J. Fan","doi":"10.1109/APEMC53576.2022.9888499","DOIUrl":null,"url":null,"abstract":"In many applications, the device under test (DUT) is embedded into a test setup. Various de-embedding techniques have been proposed to expose the real electrical behaviors of a DUT, e.g., the traditional thru-reflect-line and short-open-load-thru algorithms, where the T-matrix and its inverse form are adopted in the mathematical process. In the fields of radiofrequency and electromagnetic compatibility, a DUT may have three coupled ports, and the symmetry in the associated S-matrix breaks down, because the numbers of entry and exist ports are not equal, which results in a non-square T-matrix based upon the definitions. Given that the inverse expression of a non-square matrix does not exist, the conventional de-embedding methods are not applicable for a coupled three-port network. In this paper, a de-embedding algorithm which is feasible for coupled three-port devices is proposed and verified through the measurement-based studies. The de-embedding technique may also be applied on devices with more than three ports.","PeriodicalId":186847,"journal":{"name":"2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"De-Embedding for Coupled Three-Port Devices\",\"authors\":\"Yuandong Guo, Bo Pu, Donghyun Kim, J. Fan\",\"doi\":\"10.1109/APEMC53576.2022.9888499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many applications, the device under test (DUT) is embedded into a test setup. Various de-embedding techniques have been proposed to expose the real electrical behaviors of a DUT, e.g., the traditional thru-reflect-line and short-open-load-thru algorithms, where the T-matrix and its inverse form are adopted in the mathematical process. In the fields of radiofrequency and electromagnetic compatibility, a DUT may have three coupled ports, and the symmetry in the associated S-matrix breaks down, because the numbers of entry and exist ports are not equal, which results in a non-square T-matrix based upon the definitions. Given that the inverse expression of a non-square matrix does not exist, the conventional de-embedding methods are not applicable for a coupled three-port network. In this paper, a de-embedding algorithm which is feasible for coupled three-port devices is proposed and verified through the measurement-based studies. The de-embedding technique may also be applied on devices with more than three ports.\",\"PeriodicalId\":186847,\"journal\":{\"name\":\"2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEMC53576.2022.9888499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEMC53576.2022.9888499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In many applications, the device under test (DUT) is embedded into a test setup. Various de-embedding techniques have been proposed to expose the real electrical behaviors of a DUT, e.g., the traditional thru-reflect-line and short-open-load-thru algorithms, where the T-matrix and its inverse form are adopted in the mathematical process. In the fields of radiofrequency and electromagnetic compatibility, a DUT may have three coupled ports, and the symmetry in the associated S-matrix breaks down, because the numbers of entry and exist ports are not equal, which results in a non-square T-matrix based upon the definitions. Given that the inverse expression of a non-square matrix does not exist, the conventional de-embedding methods are not applicable for a coupled three-port network. In this paper, a de-embedding algorithm which is feasible for coupled three-port devices is proposed and verified through the measurement-based studies. The de-embedding technique may also be applied on devices with more than three ports.