状态流和状态扫描CNN架构

L. Spaanenburg, S. Malki
{"title":"状态流和状态扫描CNN架构","authors":"L. Spaanenburg, S. Malki","doi":"10.1109/CNNA.2010.5430342","DOIUrl":null,"url":null,"abstract":"The Cellular Neural Network is an obvious candidate for multi-core realization. For reason of its seemingly simple architecture, it is therefore the ideal candidate to evaluate techniques for multi-core technology mapping. In this paper it is studied how a CNN implementation can be unrolled in space or in time to fit the specific characteristics of a multi-core platform. It illustrates that this is a crucial step that sets the basic performance of a multi-core realization.","PeriodicalId":336891,"journal":{"name":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State-flow and state-scan CNN architectures\",\"authors\":\"L. Spaanenburg, S. Malki\",\"doi\":\"10.1109/CNNA.2010.5430342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cellular Neural Network is an obvious candidate for multi-core realization. For reason of its seemingly simple architecture, it is therefore the ideal candidate to evaluate techniques for multi-core technology mapping. In this paper it is studied how a CNN implementation can be unrolled in space or in time to fit the specific characteristics of a multi-core platform. It illustrates that this is a crucial step that sets the basic performance of a multi-core realization.\",\"PeriodicalId\":336891,\"journal\":{\"name\":\"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.2010.5430342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2010.5430342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞神经网络是多核实现的明显候选。由于其看似简单的体系结构,因此它是评估多核技术映射技术的理想候选。本文研究了如何在空间或时间上展开CNN实现以适应多核平台的特定特征。它说明了这是设置多核实现基本性能的关键步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State-flow and state-scan CNN architectures
The Cellular Neural Network is an obvious candidate for multi-core realization. For reason of its seemingly simple architecture, it is therefore the ideal candidate to evaluate techniques for multi-core technology mapping. In this paper it is studied how a CNN implementation can be unrolled in space or in time to fit the specific characteristics of a multi-core platform. It illustrates that this is a crucial step that sets the basic performance of a multi-core realization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信