基于深度学习语义分割方法的高分辨率多光谱遥感影像农田识别

Shuangpeng Zheng, Fang Tao, Huo Hong
{"title":"基于深度学习语义分割方法的高分辨率多光谱遥感影像农田识别","authors":"Shuangpeng Zheng, Fang Tao, Huo Hong","doi":"10.1145/3357777.3357788","DOIUrl":null,"url":null,"abstract":"Farmland mapping is an important step for estimating grain yields. However extraction of farmland from multispectral remote sensing images (RSIs) is still a challenging work, as farmland is located on not only plains but also mountains, which displays divergent and confusing characteristics in RSIs. To solve the problem of lacking the multispectral remote sensing image dataset for pretraining, we extend Deep Feature Aggregation Net (DFANet) with fewer network parameters, a semantic segmentation network, to automatically map farmland from 3-band to multispectral images in a pixel-wise strategy. In this network, we first utilize more information aggregation. The fully-connected attention module is then replaced by a proposed convolution attention module. Finally, a new proposed decoder is used to recover the details of the feature map. Experimental results show that the model with multispectral RSIs outperforms the baselines.","PeriodicalId":163030,"journal":{"name":"Proceedings of the 2019 the International Conference on Pattern Recognition and Artificial Intelligence - PRAI '19","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Farmland Recognition of High Resolution Multispectral Remote Sensing Imagery using Deep Learning Semantic Segmentation Method\",\"authors\":\"Shuangpeng Zheng, Fang Tao, Huo Hong\",\"doi\":\"10.1145/3357777.3357788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Farmland mapping is an important step for estimating grain yields. However extraction of farmland from multispectral remote sensing images (RSIs) is still a challenging work, as farmland is located on not only plains but also mountains, which displays divergent and confusing characteristics in RSIs. To solve the problem of lacking the multispectral remote sensing image dataset for pretraining, we extend Deep Feature Aggregation Net (DFANet) with fewer network parameters, a semantic segmentation network, to automatically map farmland from 3-band to multispectral images in a pixel-wise strategy. In this network, we first utilize more information aggregation. The fully-connected attention module is then replaced by a proposed convolution attention module. Finally, a new proposed decoder is used to recover the details of the feature map. Experimental results show that the model with multispectral RSIs outperforms the baselines.\",\"PeriodicalId\":163030,\"journal\":{\"name\":\"Proceedings of the 2019 the International Conference on Pattern Recognition and Artificial Intelligence - PRAI '19\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 the International Conference on Pattern Recognition and Artificial Intelligence - PRAI '19\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3357777.3357788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 the International Conference on Pattern Recognition and Artificial Intelligence - PRAI '19","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3357777.3357788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

农田测绘是估算粮食产量的重要步骤。然而,从多光谱遥感图像中提取农田仍然是一项具有挑战性的工作,因为农田既位于平原上,又位于山区,在多光谱遥感图像中表现出不同和混乱的特征。为了解决缺乏多光谱遥感图像数据集进行预训练的问题,我们扩展了一种网络参数较少的语义分割网络——深度特征聚合网络(Deep Feature Aggregation Net, DFANet),以逐像素的策略将农田从3波段自动映射到多光谱图像。在这个网络中,我们首先利用了更多的信息聚合。然后将全连接的注意模块替换为卷积注意模块。最后,提出了一种新的解码器来恢复特征映射的细节。实验结果表明,多光谱rsi模型优于基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Farmland Recognition of High Resolution Multispectral Remote Sensing Imagery using Deep Learning Semantic Segmentation Method
Farmland mapping is an important step for estimating grain yields. However extraction of farmland from multispectral remote sensing images (RSIs) is still a challenging work, as farmland is located on not only plains but also mountains, which displays divergent and confusing characteristics in RSIs. To solve the problem of lacking the multispectral remote sensing image dataset for pretraining, we extend Deep Feature Aggregation Net (DFANet) with fewer network parameters, a semantic segmentation network, to automatically map farmland from 3-band to multispectral images in a pixel-wise strategy. In this network, we first utilize more information aggregation. The fully-connected attention module is then replaced by a proposed convolution attention module. Finally, a new proposed decoder is used to recover the details of the feature map. Experimental results show that the model with multispectral RSIs outperforms the baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信