到达方向的多重协方差矩阵谱模型

H. Alnajjar, D. Wilkes
{"title":"到达方向的多重协方差矩阵谱模型","authors":"H. Alnajjar, D. Wilkes","doi":"10.1109/SECON.1995.513126","DOIUrl":null,"url":null,"abstract":"Presents a novel algorithm for modeling the behavior of the measured eigenvalues in order to find the direction of arrivals (DOAs) of sources. The authors use only the eigenvalues and not the eigenvectors to find the DOAs; no other algorithm works this way. The modeling process is based on the critical distance formula developed previously by the authors, which describes the best location to add a sensor to an existing subarray in order to improve the resolution performance of an array, also it is based on the concept of a structurally adaptive array, which promotes the idea of adapting the size and geometry of a subarray (of a much larger array) in order to optimize the detection for different scenarios.","PeriodicalId":334874,"journal":{"name":"Proceedings IEEE Southeastcon '95. Visualize the Future","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple covariance matrix spectral model for direction of arrival\",\"authors\":\"H. Alnajjar, D. Wilkes\",\"doi\":\"10.1109/SECON.1995.513126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presents a novel algorithm for modeling the behavior of the measured eigenvalues in order to find the direction of arrivals (DOAs) of sources. The authors use only the eigenvalues and not the eigenvectors to find the DOAs; no other algorithm works this way. The modeling process is based on the critical distance formula developed previously by the authors, which describes the best location to add a sensor to an existing subarray in order to improve the resolution performance of an array, also it is based on the concept of a structurally adaptive array, which promotes the idea of adapting the size and geometry of a subarray (of a much larger array) in order to optimize the detection for different scenarios.\",\"PeriodicalId\":334874,\"journal\":{\"name\":\"Proceedings IEEE Southeastcon '95. Visualize the Future\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Southeastcon '95. Visualize the Future\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.1995.513126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Southeastcon '95. Visualize the Future","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.1995.513126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的算法,用于模拟测量特征值的行为,以确定源的到达方向。作者只使用特征值而不使用特征向量来求doa;没有其他算法是这样工作的。建模过程基于作者先前开发的临界距离公式,该公式描述了将传感器添加到现有子阵列的最佳位置,以提高阵列的分辨率性能,同时它还基于结构自适应阵列的概念,该概念促进了适应子阵列(更大的阵列)的大小和几何形状的想法,以优化不同场景的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple covariance matrix spectral model for direction of arrival
Presents a novel algorithm for modeling the behavior of the measured eigenvalues in order to find the direction of arrivals (DOAs) of sources. The authors use only the eigenvalues and not the eigenvectors to find the DOAs; no other algorithm works this way. The modeling process is based on the critical distance formula developed previously by the authors, which describes the best location to add a sensor to an existing subarray in order to improve the resolution performance of an array, also it is based on the concept of a structurally adaptive array, which promotes the idea of adapting the size and geometry of a subarray (of a much larger array) in order to optimize the detection for different scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信