{"title":"用于微波结构时域建模不确定性量化的多分辨率 FDTD 方法","authors":"Luyu Wang, C. Sarris","doi":"10.1109/MWSYM.2014.6848540","DOIUrl":null,"url":null,"abstract":"Recent research on parameter uncertainty quantification via the Finite-Difference Time-Domain (FDTD) method has led to several approaches aimed at outperforming the conventional Monte-Carlo technique. Among those, the use of polynomial chaos (PC) is characterized by mathematical robustness and computational efficiency. However, it still requires either multiple FDTD runs (in non-intrusive PC methods) or the execution of one large simulation to compute the PC expansion coefficients for all field nodes and time steps (in the intrusive case). This paper presents an intrusive PC-FDTD method stemming from a wavelet-based PC expansion of field components, with respect to the uncertain parameters. This multi-resolution expansion implements a sparse adaptive grid in the uncertain parameter space, which produces significant performance gains, without sacrificing accuracy.","PeriodicalId":262816,"journal":{"name":"2014 IEEE MTT-S International Microwave Symposium (IMS2014)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-resolution FDTD method for uncertainty quantification in the time-domain modeling of microwave structures\",\"authors\":\"Luyu Wang, C. Sarris\",\"doi\":\"10.1109/MWSYM.2014.6848540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research on parameter uncertainty quantification via the Finite-Difference Time-Domain (FDTD) method has led to several approaches aimed at outperforming the conventional Monte-Carlo technique. Among those, the use of polynomial chaos (PC) is characterized by mathematical robustness and computational efficiency. However, it still requires either multiple FDTD runs (in non-intrusive PC methods) or the execution of one large simulation to compute the PC expansion coefficients for all field nodes and time steps (in the intrusive case). This paper presents an intrusive PC-FDTD method stemming from a wavelet-based PC expansion of field components, with respect to the uncertain parameters. This multi-resolution expansion implements a sparse adaptive grid in the uncertain parameter space, which produces significant performance gains, without sacrificing accuracy.\",\"PeriodicalId\":262816,\"journal\":{\"name\":\"2014 IEEE MTT-S International Microwave Symposium (IMS2014)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE MTT-S International Microwave Symposium (IMS2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2014.6848540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE MTT-S International Microwave Symposium (IMS2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2014.6848540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
最近,通过有限差分时域(FDTD)方法对参数不确定性进行量化的研究,提出了几种旨在超越传统蒙特卡洛技术的方法。其中,使用多项式混沌(PC)具有数学鲁棒性和计算效率高的特点。然而,它仍然需要多次 FDTD 运行(在非侵入式 PC 方法中)或执行一次大型模拟,以计算所有场节点和时间步长的 PC 扩展系数(在侵入式情况下)。本文介绍了一种侵入式 PC-FDTD 方法,该方法源于对不确定参数进行的基于小波的场分量 PC 扩展。这种多分辨率扩展在不确定参数空间中实现了稀疏自适应网格,从而在不牺牲精度的情况下显著提高了性能。
A multi-resolution FDTD method for uncertainty quantification in the time-domain modeling of microwave structures
Recent research on parameter uncertainty quantification via the Finite-Difference Time-Domain (FDTD) method has led to several approaches aimed at outperforming the conventional Monte-Carlo technique. Among those, the use of polynomial chaos (PC) is characterized by mathematical robustness and computational efficiency. However, it still requires either multiple FDTD runs (in non-intrusive PC methods) or the execution of one large simulation to compute the PC expansion coefficients for all field nodes and time steps (in the intrusive case). This paper presents an intrusive PC-FDTD method stemming from a wavelet-based PC expansion of field components, with respect to the uncertain parameters. This multi-resolution expansion implements a sparse adaptive grid in the uncertain parameter space, which produces significant performance gains, without sacrificing accuracy.