一种基于遗传算法的混合和分类大数据集聚类算法

Li Jie, G. Xinbo, Jiao Li-cheng
{"title":"一种基于遗传算法的混合和分类大数据集聚类算法","authors":"Li Jie, G. Xinbo, Jiao Li-cheng","doi":"10.1109/ICCIMA.2003.1238108","DOIUrl":null,"url":null,"abstract":"In the field of data mining, it is often encountered to perform cluster analysis on large data sets with mixed numeric and categorical values. However, most existing clustering algorithms are only efficient for the numeric data rather than the mixed data set. For this purpose, this paper presents a novel clustering algorithm for these mixed data sets by modifying the common cost function, trace of the within cluster dispersion matrix. The genetic algorithm (GA) is used to optimize the new cost function to obtain valid clustering result. Experimental result illustrates that the GA-based new clustering algorithm is feasible for the large data sets with mixed numeric and categorical values.","PeriodicalId":385362,"journal":{"name":"Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A GA-based clustering algorithm for large data sets with mixed and categorical values\",\"authors\":\"Li Jie, G. Xinbo, Jiao Li-cheng\",\"doi\":\"10.1109/ICCIMA.2003.1238108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of data mining, it is often encountered to perform cluster analysis on large data sets with mixed numeric and categorical values. However, most existing clustering algorithms are only efficient for the numeric data rather than the mixed data set. For this purpose, this paper presents a novel clustering algorithm for these mixed data sets by modifying the common cost function, trace of the within cluster dispersion matrix. The genetic algorithm (GA) is used to optimize the new cost function to obtain valid clustering result. Experimental result illustrates that the GA-based new clustering algorithm is feasible for the large data sets with mixed numeric and categorical values.\",\"PeriodicalId\":385362,\"journal\":{\"name\":\"Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIMA.2003.1238108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.2003.1238108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在数据挖掘领域,经常遇到对具有混合数值和分类值的大型数据集进行聚类分析的问题。然而,大多数现有的聚类算法只对数字数据有效,而对混合数据集无效。为此,本文提出了一种新的混合数据集聚类算法,该算法通过修改簇内弥散矩阵轨迹的共同代价函数来实现。利用遗传算法对新的代价函数进行优化,得到有效的聚类结果。实验结果表明,基于遗传算法的聚类算法对于数值和分类值混合的大型数据集是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A GA-based clustering algorithm for large data sets with mixed and categorical values
In the field of data mining, it is often encountered to perform cluster analysis on large data sets with mixed numeric and categorical values. However, most existing clustering algorithms are only efficient for the numeric data rather than the mixed data set. For this purpose, this paper presents a novel clustering algorithm for these mixed data sets by modifying the common cost function, trace of the within cluster dispersion matrix. The genetic algorithm (GA) is used to optimize the new cost function to obtain valid clustering result. Experimental result illustrates that the GA-based new clustering algorithm is feasible for the large data sets with mixed numeric and categorical values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信