John E. Augustine, Soumyottam Chatterjee, Gopal Pandurangan
{"title":"拜占庭弹性分布式哈希表的完全分布式可扩展对等协议","authors":"John E. Augustine, Soumyottam Chatterjee, Gopal Pandurangan","doi":"10.1145/3490148.3538588","DOIUrl":null,"url":null,"abstract":"Performing computation in the presence of faulty and malicious nodes is a central problem in distributed computing. Over 35 years ago, Dwork, Peleg, Pippenger, and Upfal [STOC 1986, SICOMP 1988] studied the fundamental Byzantine agreement problem in sparse, bounded degree networks and presented the first protocol that achieved almost-everywhere agreement among good nodes. However, this protocol and several subsequent protocols including that of King, Saia, Sanwalani, and Vee [FOCS 2006] had the drawback that they were not fully-distributed - in those protocols, nodes are required to have initial knowledge of the entire network topology. This drawback makes such protocols not applicable to real-world communication networks such as peer-to-peer (P2P) networks, which are typically sparse and bounded degree and where nodes initially have only local knowledge of themselves and of their neighbors.","PeriodicalId":112865,"journal":{"name":"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Fully-Distributed Scalable Peer-to-Peer Protocol for Byzantine-Resilient Distributed Hash Tables\",\"authors\":\"John E. Augustine, Soumyottam Chatterjee, Gopal Pandurangan\",\"doi\":\"10.1145/3490148.3538588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performing computation in the presence of faulty and malicious nodes is a central problem in distributed computing. Over 35 years ago, Dwork, Peleg, Pippenger, and Upfal [STOC 1986, SICOMP 1988] studied the fundamental Byzantine agreement problem in sparse, bounded degree networks and presented the first protocol that achieved almost-everywhere agreement among good nodes. However, this protocol and several subsequent protocols including that of King, Saia, Sanwalani, and Vee [FOCS 2006] had the drawback that they were not fully-distributed - in those protocols, nodes are required to have initial knowledge of the entire network topology. This drawback makes such protocols not applicable to real-world communication networks such as peer-to-peer (P2P) networks, which are typically sparse and bounded degree and where nodes initially have only local knowledge of themselves and of their neighbors.\",\"PeriodicalId\":112865,\"journal\":{\"name\":\"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3490148.3538588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3490148.3538588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Fully-Distributed Scalable Peer-to-Peer Protocol for Byzantine-Resilient Distributed Hash Tables
Performing computation in the presence of faulty and malicious nodes is a central problem in distributed computing. Over 35 years ago, Dwork, Peleg, Pippenger, and Upfal [STOC 1986, SICOMP 1988] studied the fundamental Byzantine agreement problem in sparse, bounded degree networks and presented the first protocol that achieved almost-everywhere agreement among good nodes. However, this protocol and several subsequent protocols including that of King, Saia, Sanwalani, and Vee [FOCS 2006] had the drawback that they were not fully-distributed - in those protocols, nodes are required to have initial knowledge of the entire network topology. This drawback makes such protocols not applicable to real-world communication networks such as peer-to-peer (P2P) networks, which are typically sparse and bounded degree and where nodes initially have only local knowledge of themselves and of their neighbors.