改进OpenStack Swift与I/O栈的交互,支持软件定义存储

Ramon Nou, Alberto Miranda, Marc Siquier, Toni Cortes
{"title":"改进OpenStack Swift与I/O栈的交互,支持软件定义存储","authors":"Ramon Nou, Alberto Miranda, Marc Siquier, Toni Cortes","doi":"10.1109/SC2.2017.17","DOIUrl":null,"url":null,"abstract":"This paper analyses how OpenStack Swift, a distributed object storage service for a globally used middleware, interacts with the I/O subsystem through the Operating System. This interaction, which seems organised and clean on the middleware side, becomes disordered on the device side when using mechanical disk drives, due to the way threads are used internally to request data. We will show that only modifying the Swift threading model we achieve an 18% mean improvement in performance with objects larger than 512 KiB and obtain a similar performance with smaller objects. Compared to the original scenario, the performance obtained on both scenarios is obtained in a fair way: the bandwidth is shared equally between concurrently accessed objects. Moreover, this threading model allows us to apply techniques for Software Defined Storage (SDS). We show an implementation of a Bandwidth Differentiation technique that can control each data stream and that guarantees a high utilization of the device.","PeriodicalId":188326,"journal":{"name":"2017 IEEE 7th International Symposium on Cloud and Service Computing (SC2)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improving OpenStack Swift interaction with the I/O Stack to Enable Software Defined Storage\",\"authors\":\"Ramon Nou, Alberto Miranda, Marc Siquier, Toni Cortes\",\"doi\":\"10.1109/SC2.2017.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyses how OpenStack Swift, a distributed object storage service for a globally used middleware, interacts with the I/O subsystem through the Operating System. This interaction, which seems organised and clean on the middleware side, becomes disordered on the device side when using mechanical disk drives, due to the way threads are used internally to request data. We will show that only modifying the Swift threading model we achieve an 18% mean improvement in performance with objects larger than 512 KiB and obtain a similar performance with smaller objects. Compared to the original scenario, the performance obtained on both scenarios is obtained in a fair way: the bandwidth is shared equally between concurrently accessed objects. Moreover, this threading model allows us to apply techniques for Software Defined Storage (SDS). We show an implementation of a Bandwidth Differentiation technique that can control each data stream and that guarantees a high utilization of the device.\",\"PeriodicalId\":188326,\"journal\":{\"name\":\"2017 IEEE 7th International Symposium on Cloud and Service Computing (SC2)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Symposium on Cloud and Service Computing (SC2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC2.2017.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Symposium on Cloud and Service Computing (SC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC2.2017.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文分析了OpenStack Swift(面向全局使用的分布式对象存储服务中间件)如何通过操作系统与I/O子系统进行交互。这种交互,在中间件端看起来是有组织的和干净的,当使用机械磁盘驱动器时,在设备端变得混乱,因为线程在内部使用请求数据的方式。我们将展示,仅修改Swift线程模型,我们就可以在大于512 KiB的对象上实现18%的平均性能提升,并且在较小的对象上获得类似的性能。与原始场景相比,两种场景的性能都比较公平:并发访问的对象之间平均共享带宽。此外,这个线程模型允许我们应用软件定义存储(SDS)技术。我们展示了带宽区分技术的实现,该技术可以控制每个数据流,并保证设备的高利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving OpenStack Swift interaction with the I/O Stack to Enable Software Defined Storage
This paper analyses how OpenStack Swift, a distributed object storage service for a globally used middleware, interacts with the I/O subsystem through the Operating System. This interaction, which seems organised and clean on the middleware side, becomes disordered on the device side when using mechanical disk drives, due to the way threads are used internally to request data. We will show that only modifying the Swift threading model we achieve an 18% mean improvement in performance with objects larger than 512 KiB and obtain a similar performance with smaller objects. Compared to the original scenario, the performance obtained on both scenarios is obtained in a fair way: the bandwidth is shared equally between concurrently accessed objects. Moreover, this threading model allows us to apply techniques for Software Defined Storage (SDS). We show an implementation of a Bandwidth Differentiation technique that can control each data stream and that guarantees a high utilization of the device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信