{"title":"Lean和Mathematica之间的一个可扩展的Ad Hoc接口","authors":"R. Lewis","doi":"10.4204/EPTCS.262.4","DOIUrl":null,"url":null,"abstract":"We implement a user-extensible ad hoc connection between the Lean proof assistant and the computer algebra system Mathematica. By reflecting the syntax of each system in the other and providing a flexible interface for extending translation, our connection allows for the exchange of arbitrary information between the two systems. We show how to make use of the Lean metaprogramming framework to verify certain Mathematica computations, so that the rigor of the proof assistant is not compromised.","PeriodicalId":422279,"journal":{"name":"International Workshop on Proof Exchange for Theorem Proving","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An Extensible Ad Hoc Interface between Lean and Mathematica\",\"authors\":\"R. Lewis\",\"doi\":\"10.4204/EPTCS.262.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We implement a user-extensible ad hoc connection between the Lean proof assistant and the computer algebra system Mathematica. By reflecting the syntax of each system in the other and providing a flexible interface for extending translation, our connection allows for the exchange of arbitrary information between the two systems. We show how to make use of the Lean metaprogramming framework to verify certain Mathematica computations, so that the rigor of the proof assistant is not compromised.\",\"PeriodicalId\":422279,\"journal\":{\"name\":\"International Workshop on Proof Exchange for Theorem Proving\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Proof Exchange for Theorem Proving\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.262.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Proof Exchange for Theorem Proving","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.262.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Extensible Ad Hoc Interface between Lean and Mathematica
We implement a user-extensible ad hoc connection between the Lean proof assistant and the computer algebra system Mathematica. By reflecting the syntax of each system in the other and providing a flexible interface for extending translation, our connection allows for the exchange of arbitrary information between the two systems. We show how to make use of the Lean metaprogramming framework to verify certain Mathematica computations, so that the rigor of the proof assistant is not compromised.