自适应架构中主动决策的机器学习驱动方法

H. Muccini, Karthik Vaidhyanathan
{"title":"自适应架构中主动决策的机器学习驱动方法","authors":"H. Muccini, Karthik Vaidhyanathan","doi":"10.1109/ICSA-C.2019.00050","DOIUrl":null,"url":null,"abstract":"Self-adaptation is nowadays considered to be the best solution to dynamically reconfigure a system in the occurrence of deviations from the expected quality of service (QoS) parameters. However, data- and event-driven systems, such as IoT applications, impose new heterogeneity, interoperability, and distribution issues, that make uncertainty on the QoS stability even harder. Typical adaption techniques make use of reactive approaches, an after-the-fact adaptation that starts when the system deviates from the expected QoS parameters. What we envision is instead a proactive approach to anticipate the changes before the event of a QoS deviation. More specifically, we propose IoTArchML, a machine learning-driven approach for decision making in aiding proactive architectural adaptation of IoT system. The approach i) continuously monitors the QoS parameters; ii) predicts, based on historical data, possible deviations from the acceptable QoS parameters; iii) considers a list of possible alternative solutions to prevent the QoS deviation; iv) selects the optimal solution from the list; and v) checks whether the envisioned solution satisfies the overall system QoS requirements. We, therefore, move the focus from self-adaptive architectures to self-learning architectures, enabling the architectures to learn and improve over a period of time.","PeriodicalId":239999,"journal":{"name":"2019 IEEE International Conference on Software Architecture Companion (ICSA-C)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Machine Learning-Driven Approach for Proactive Decision Making in Adaptive Architectures\",\"authors\":\"H. Muccini, Karthik Vaidhyanathan\",\"doi\":\"10.1109/ICSA-C.2019.00050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-adaptation is nowadays considered to be the best solution to dynamically reconfigure a system in the occurrence of deviations from the expected quality of service (QoS) parameters. However, data- and event-driven systems, such as IoT applications, impose new heterogeneity, interoperability, and distribution issues, that make uncertainty on the QoS stability even harder. Typical adaption techniques make use of reactive approaches, an after-the-fact adaptation that starts when the system deviates from the expected QoS parameters. What we envision is instead a proactive approach to anticipate the changes before the event of a QoS deviation. More specifically, we propose IoTArchML, a machine learning-driven approach for decision making in aiding proactive architectural adaptation of IoT system. The approach i) continuously monitors the QoS parameters; ii) predicts, based on historical data, possible deviations from the acceptable QoS parameters; iii) considers a list of possible alternative solutions to prevent the QoS deviation; iv) selects the optimal solution from the list; and v) checks whether the envisioned solution satisfies the overall system QoS requirements. We, therefore, move the focus from self-adaptive architectures to self-learning architectures, enabling the architectures to learn and improve over a period of time.\",\"PeriodicalId\":239999,\"journal\":{\"name\":\"2019 IEEE International Conference on Software Architecture Companion (ICSA-C)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Software Architecture Companion (ICSA-C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSA-C.2019.00050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Software Architecture Companion (ICSA-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSA-C.2019.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

目前,自适应被认为是在偏离预期服务质量(QoS)参数时动态重新配置系统的最佳解决方案。然而,数据和事件驱动的系统,如物联网应用,带来了新的异构性、互操作性和分布问题,这使得QoS稳定性的不确定性变得更加困难。典型的自适应技术使用反应性方法,即当系统偏离预期的QoS参数时开始的事后自适应。相反,我们设想的是一种主动的方法,在QoS偏离事件发生之前预测变化。更具体地说,我们提出了IoTArchML,这是一种机器学习驱动的决策方法,用于帮助物联网系统的主动架构适应。该方法i)连续监测QoS参数;ii)根据历史数据预测可能偏离可接受QoS参数的情况;iii)考虑一系列可能的替代解决方案,以防止QoS偏差;Iv)从列表中选择最优解;v)检查设想的解决方案是否满足整个系统的QoS要求。因此,我们将焦点从自适应体系结构转移到自学习体系结构,使体系结构能够在一段时间内学习和改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Machine Learning-Driven Approach for Proactive Decision Making in Adaptive Architectures
Self-adaptation is nowadays considered to be the best solution to dynamically reconfigure a system in the occurrence of deviations from the expected quality of service (QoS) parameters. However, data- and event-driven systems, such as IoT applications, impose new heterogeneity, interoperability, and distribution issues, that make uncertainty on the QoS stability even harder. Typical adaption techniques make use of reactive approaches, an after-the-fact adaptation that starts when the system deviates from the expected QoS parameters. What we envision is instead a proactive approach to anticipate the changes before the event of a QoS deviation. More specifically, we propose IoTArchML, a machine learning-driven approach for decision making in aiding proactive architectural adaptation of IoT system. The approach i) continuously monitors the QoS parameters; ii) predicts, based on historical data, possible deviations from the acceptable QoS parameters; iii) considers a list of possible alternative solutions to prevent the QoS deviation; iv) selects the optimal solution from the list; and v) checks whether the envisioned solution satisfies the overall system QoS requirements. We, therefore, move the focus from self-adaptive architectures to self-learning architectures, enabling the architectures to learn and improve over a period of time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信