基于PCA-SVM-HMM混合分类器的智能手机活动识别

B. Abidine, B. Fergani, Ihssene Menhour
{"title":"基于PCA-SVM-HMM混合分类器的智能手机活动识别","authors":"B. Abidine, B. Fergani, Ihssene Menhour","doi":"10.1109/wincom47513.2019.8942492","DOIUrl":null,"url":null,"abstract":"Physical activity recognition using embedded sensors has enabled many context-aware applications in different areas, such as healthcare. A various real-life ubiquitous computing applications use smart sensors embedded in smart phones to infer user's human activities. In this work, we proposed a new hybrid classification model to perform recognition of activities using Smartphone data. The proposed method combines SVM learning algorithm with HMM, to classify and identify activity. Principal Component Analysis (PCA) is used to reduce the features set in the dataset. Experiments performed in the real datasets show comparative results between this SVM-HMM, SVM, HMM and the baseline methods in terms of recognition performance, highlighting the advantages of the proposed method.","PeriodicalId":222207,"journal":{"name":"2019 International Conference on Wireless Networks and Mobile Communications (WINCOM)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Activity Recognition from Smartphones Using Hybrid Classifier PCA-SVM-HMM\",\"authors\":\"B. Abidine, B. Fergani, Ihssene Menhour\",\"doi\":\"10.1109/wincom47513.2019.8942492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical activity recognition using embedded sensors has enabled many context-aware applications in different areas, such as healthcare. A various real-life ubiquitous computing applications use smart sensors embedded in smart phones to infer user's human activities. In this work, we proposed a new hybrid classification model to perform recognition of activities using Smartphone data. The proposed method combines SVM learning algorithm with HMM, to classify and identify activity. Principal Component Analysis (PCA) is used to reduce the features set in the dataset. Experiments performed in the real datasets show comparative results between this SVM-HMM, SVM, HMM and the baseline methods in terms of recognition performance, highlighting the advantages of the proposed method.\",\"PeriodicalId\":222207,\"journal\":{\"name\":\"2019 International Conference on Wireless Networks and Mobile Communications (WINCOM)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Wireless Networks and Mobile Communications (WINCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/wincom47513.2019.8942492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Wireless Networks and Mobile Communications (WINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wincom47513.2019.8942492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

使用嵌入式传感器的身体活动识别已经在医疗保健等不同领域实现了许多上下文感知应用。各种现实生活中的普适计算应用使用嵌入智能手机的智能传感器来推断用户的人类活动。在这项工作中,我们提出了一种新的混合分类模型来使用智能手机数据进行活动识别。该方法将支持向量机学习算法与HMM相结合,对活动进行分类和识别。采用主成分分析(PCA)对数据集中的特征集进行约简。在实际数据集上进行的实验结果表明,SVM-HMM、SVM、HMM与基线方法的识别性能进行了对比,突出了本文方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activity Recognition from Smartphones Using Hybrid Classifier PCA-SVM-HMM
Physical activity recognition using embedded sensors has enabled many context-aware applications in different areas, such as healthcare. A various real-life ubiquitous computing applications use smart sensors embedded in smart phones to infer user's human activities. In this work, we proposed a new hybrid classification model to perform recognition of activities using Smartphone data. The proposed method combines SVM learning algorithm with HMM, to classify and identify activity. Principal Component Analysis (PCA) is used to reduce the features set in the dataset. Experiments performed in the real datasets show comparative results between this SVM-HMM, SVM, HMM and the baseline methods in terms of recognition performance, highlighting the advantages of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信