{"title":"亚50 nm InP HEMT的纳米铣削和STEM成像","authors":"Besmeh F. Raya","doi":"10.31399/asm.cp.istfa2021p0146","DOIUrl":null,"url":null,"abstract":"\n The sub-50 nm Indium Arsenide Composite Channel (IACC) High Electron Mobility Transistors (HEMTs) are fabricated on 100 mm Indium Phosphide (InP) substrates. This technology offers the best performance for low-noise and high-frequency, space and military applications. Typical failure mechanisms are observed in III-V HEMT technologies, including gate sinking, impact ionization and electromigration. Experiments were conducted to understand failure mechanisms of the IACC HEMTs by life testing devices at accelerated temperatures and biases; their electrical characteristics were measured at each stress interval. In order to determine which devices and where any defects occurred after the accelerated life tests, an additional test was completed, a Low-Noise Amplifier (LNA) Circuit assessment. The Low-Noise Amplifier (LNA) Circuit assessment determines which HEMT device is the weakest amongst the LNA circuit. Since many of the known III-V semiconductor failure mechanisms physically degrade or damage HEMTs, cross-sections are important to prepare to detect these mechanisms. In this presentation, advanced microscopy techniques with sub-nanometer resolutions, will examine physical characteristics of the HEMT at the atomic scale. The microscopy techniques will include a Focused Ion Beam/Scanning Electron Microscope (FIB/SEM), Nanomill and a Transmission Electron Microscope (TEM) along with Energy Dispersive Spectroscopy (EDS).","PeriodicalId":188323,"journal":{"name":"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanomilling and STEM Imaging of Sub-50 nm InP HEMT\",\"authors\":\"Besmeh F. Raya\",\"doi\":\"10.31399/asm.cp.istfa2021p0146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The sub-50 nm Indium Arsenide Composite Channel (IACC) High Electron Mobility Transistors (HEMTs) are fabricated on 100 mm Indium Phosphide (InP) substrates. This technology offers the best performance for low-noise and high-frequency, space and military applications. Typical failure mechanisms are observed in III-V HEMT technologies, including gate sinking, impact ionization and electromigration. Experiments were conducted to understand failure mechanisms of the IACC HEMTs by life testing devices at accelerated temperatures and biases; their electrical characteristics were measured at each stress interval. In order to determine which devices and where any defects occurred after the accelerated life tests, an additional test was completed, a Low-Noise Amplifier (LNA) Circuit assessment. The Low-Noise Amplifier (LNA) Circuit assessment determines which HEMT device is the weakest amongst the LNA circuit. Since many of the known III-V semiconductor failure mechanisms physically degrade or damage HEMTs, cross-sections are important to prepare to detect these mechanisms. In this presentation, advanced microscopy techniques with sub-nanometer resolutions, will examine physical characteristics of the HEMT at the atomic scale. The microscopy techniques will include a Focused Ion Beam/Scanning Electron Microscope (FIB/SEM), Nanomill and a Transmission Electron Microscope (TEM) along with Energy Dispersive Spectroscopy (EDS).\",\"PeriodicalId\":188323,\"journal\":{\"name\":\"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.cp.istfa2021p0146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2021p0146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanomilling and STEM Imaging of Sub-50 nm InP HEMT
The sub-50 nm Indium Arsenide Composite Channel (IACC) High Electron Mobility Transistors (HEMTs) are fabricated on 100 mm Indium Phosphide (InP) substrates. This technology offers the best performance for low-noise and high-frequency, space and military applications. Typical failure mechanisms are observed in III-V HEMT technologies, including gate sinking, impact ionization and electromigration. Experiments were conducted to understand failure mechanisms of the IACC HEMTs by life testing devices at accelerated temperatures and biases; their electrical characteristics were measured at each stress interval. In order to determine which devices and where any defects occurred after the accelerated life tests, an additional test was completed, a Low-Noise Amplifier (LNA) Circuit assessment. The Low-Noise Amplifier (LNA) Circuit assessment determines which HEMT device is the weakest amongst the LNA circuit. Since many of the known III-V semiconductor failure mechanisms physically degrade or damage HEMTs, cross-sections are important to prepare to detect these mechanisms. In this presentation, advanced microscopy techniques with sub-nanometer resolutions, will examine physical characteristics of the HEMT at the atomic scale. The microscopy techniques will include a Focused Ion Beam/Scanning Electron Microscope (FIB/SEM), Nanomill and a Transmission Electron Microscope (TEM) along with Energy Dispersive Spectroscopy (EDS).