一种新的永常数的快速计算方法

Niu Xuewei, Su Sheng-hui, Z. Jianghua
{"title":"一种新的永常数的快速计算方法","authors":"Niu Xuewei, Su Sheng-hui, Z. Jianghua","doi":"10.1088/1757-899X/790/1/012057","DOIUrl":null,"url":null,"abstract":"This paper proposes a general algorithm called Store-zechin for quickly computing the permanent of an arbitrary square matrix. Its key idea is storage, multiplexing, and recursion. That is, in a recursive process, some sub-terms which have already been calculated are no longer calculated, but are directly substituted with the previous calculation results. The new algorithm utilizes sufficiently computer memories and stored data to speed the computation of a permanent. The Analyses show that computating the permanent of an n * n matrix by Store-zechin requires (2^(n - 1)- 1)n multiplications and (2^(n-1))(n - 2)+ 1 additions while does (2^n - 1)n + 1 multiplications and (2^n - n)(n + 1)- 2 additions by the Ryser algorithm, and does (2^(n - 1))n + (n + 2) multiplications and (2^(n - 1))(n + 1)+ (n^2 - n -1) additions by the R-N-W algorithm. Therefore, Store-zechin is excellent more than the latter two algorithms, and has a better application prospect.","PeriodicalId":113162,"journal":{"name":"arXiv: Computational Complexity","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Fast Computation of a Permanent\",\"authors\":\"Niu Xuewei, Su Sheng-hui, Z. Jianghua\",\"doi\":\"10.1088/1757-899X/790/1/012057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a general algorithm called Store-zechin for quickly computing the permanent of an arbitrary square matrix. Its key idea is storage, multiplexing, and recursion. That is, in a recursive process, some sub-terms which have already been calculated are no longer calculated, but are directly substituted with the previous calculation results. The new algorithm utilizes sufficiently computer memories and stored data to speed the computation of a permanent. The Analyses show that computating the permanent of an n * n matrix by Store-zechin requires (2^(n - 1)- 1)n multiplications and (2^(n-1))(n - 2)+ 1 additions while does (2^n - 1)n + 1 multiplications and (2^n - n)(n + 1)- 2 additions by the Ryser algorithm, and does (2^(n - 1))n + (n + 2) multiplications and (2^(n - 1))(n + 1)+ (n^2 - n -1) additions by the R-N-W algorithm. Therefore, Store-zechin is excellent more than the latter two algorithms, and has a better application prospect.\",\"PeriodicalId\":113162,\"journal\":{\"name\":\"arXiv: Computational Complexity\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1757-899X/790/1/012057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1757-899X/790/1/012057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种快速计算任意方阵永久值的通用算法Store-zechin。它的关键思想是存储、多路复用和递归。即在递归过程中,一些已经计算过的子项不再计算,直接代入之前的计算结果。新算法充分利用了计算机内存和存储的数据来加快一个永久的计算速度。分析表明,用Store-zechin计算n * n矩阵的永久需要(2^(n-1) -1) n次乘法和(2^(n-1))(2^(n-1))(n - 2)+ 1次加法,而用Ryser算法需要(2^(n-1) n + 1次乘法和(2^n - n) n + 1次加法,用R-N-W算法需要(2^(n-1)) n + (n + 2)次乘法和(2^(n-1))(n + 1)+ (n + 2)次加法。因此,Store-zechin算法优于后两种算法,具有更好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Fast Computation of a Permanent
This paper proposes a general algorithm called Store-zechin for quickly computing the permanent of an arbitrary square matrix. Its key idea is storage, multiplexing, and recursion. That is, in a recursive process, some sub-terms which have already been calculated are no longer calculated, but are directly substituted with the previous calculation results. The new algorithm utilizes sufficiently computer memories and stored data to speed the computation of a permanent. The Analyses show that computating the permanent of an n * n matrix by Store-zechin requires (2^(n - 1)- 1)n multiplications and (2^(n-1))(n - 2)+ 1 additions while does (2^n - 1)n + 1 multiplications and (2^n - n)(n + 1)- 2 additions by the Ryser algorithm, and does (2^(n - 1))n + (n + 2) multiplications and (2^(n - 1))(n + 1)+ (n^2 - n -1) additions by the R-N-W algorithm. Therefore, Store-zechin is excellent more than the latter two algorithms, and has a better application prospect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信