基于粒子滤波的电器状态估计

Dominik Egarter, Venkata Pathuri Bhuvana, W. Elmenreich
{"title":"基于粒子滤波的电器状态估计","authors":"Dominik Egarter, Venkata Pathuri Bhuvana, W. Elmenreich","doi":"10.1145/2528282.2528306","DOIUrl":null,"url":null,"abstract":"Non-Intrusive Load Monitoring is a single-point metering approach to identify and to monitor household appliances according their appliance power characteristics. In this paper, we propose an unsupervised classification approach for appliance state estimation of on/off-appliances modeled by a Hidden Markov Model (HMM). To estimate the states of appliances, we use the sequential Monte Carlo or particle filtering (PF) method. The proposed algorithm is tested with MATLAB simulations and is evaluated according to correctly or incorrectly detected on/off events.","PeriodicalId":184274,"journal":{"name":"Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Appliance State Estimation based on Particle Filtering\",\"authors\":\"Dominik Egarter, Venkata Pathuri Bhuvana, W. Elmenreich\",\"doi\":\"10.1145/2528282.2528306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-Intrusive Load Monitoring is a single-point metering approach to identify and to monitor household appliances according their appliance power characteristics. In this paper, we propose an unsupervised classification approach for appliance state estimation of on/off-appliances modeled by a Hidden Markov Model (HMM). To estimate the states of appliances, we use the sequential Monte Carlo or particle filtering (PF) method. The proposed algorithm is tested with MATLAB simulations and is evaluated according to correctly or incorrectly detected on/off events.\",\"PeriodicalId\":184274,\"journal\":{\"name\":\"Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2528282.2528306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2528282.2528306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

非侵入式负荷监测是一种单点计量方法,根据家用电器的功率特性来识别和监测家用电器。本文提出一种基于隐马尔可夫模型(HMM)的无监督分类方法,用于开/关电器状态估计。为了估计器具的状态,我们使用顺序蒙特卡罗或粒子滤波(PF)方法。通过MATLAB仿真对该算法进行了测试,并根据正确或错误检测到的开/关事件进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Appliance State Estimation based on Particle Filtering
Non-Intrusive Load Monitoring is a single-point metering approach to identify and to monitor household appliances according their appliance power characteristics. In this paper, we propose an unsupervised classification approach for appliance state estimation of on/off-appliances modeled by a Hidden Markov Model (HMM). To estimate the states of appliances, we use the sequential Monte Carlo or particle filtering (PF) method. The proposed algorithm is tested with MATLAB simulations and is evaluated according to correctly or incorrectly detected on/off events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信