Dominik Egarter, Venkata Pathuri Bhuvana, W. Elmenreich
{"title":"基于粒子滤波的电器状态估计","authors":"Dominik Egarter, Venkata Pathuri Bhuvana, W. Elmenreich","doi":"10.1145/2528282.2528306","DOIUrl":null,"url":null,"abstract":"Non-Intrusive Load Monitoring is a single-point metering approach to identify and to monitor household appliances according their appliance power characteristics. In this paper, we propose an unsupervised classification approach for appliance state estimation of on/off-appliances modeled by a Hidden Markov Model (HMM). To estimate the states of appliances, we use the sequential Monte Carlo or particle filtering (PF) method. The proposed algorithm is tested with MATLAB simulations and is evaluated according to correctly or incorrectly detected on/off events.","PeriodicalId":184274,"journal":{"name":"Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Appliance State Estimation based on Particle Filtering\",\"authors\":\"Dominik Egarter, Venkata Pathuri Bhuvana, W. Elmenreich\",\"doi\":\"10.1145/2528282.2528306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-Intrusive Load Monitoring is a single-point metering approach to identify and to monitor household appliances according their appliance power characteristics. In this paper, we propose an unsupervised classification approach for appliance state estimation of on/off-appliances modeled by a Hidden Markov Model (HMM). To estimate the states of appliances, we use the sequential Monte Carlo or particle filtering (PF) method. The proposed algorithm is tested with MATLAB simulations and is evaluated according to correctly or incorrectly detected on/off events.\",\"PeriodicalId\":184274,\"journal\":{\"name\":\"Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2528282.2528306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2528282.2528306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Appliance State Estimation based on Particle Filtering
Non-Intrusive Load Monitoring is a single-point metering approach to identify and to monitor household appliances according their appliance power characteristics. In this paper, we propose an unsupervised classification approach for appliance state estimation of on/off-appliances modeled by a Hidden Markov Model (HMM). To estimate the states of appliances, we use the sequential Monte Carlo or particle filtering (PF) method. The proposed algorithm is tested with MATLAB simulations and is evaluated according to correctly or incorrectly detected on/off events.