预测非农就业

Tarun Bhatia
{"title":"预测非农就业","authors":"Tarun Bhatia","doi":"10.2139/ssrn.3683459","DOIUrl":null,"url":null,"abstract":"U.S. Nonfarm employment is considered one of the key indicators for assessing the state of the labor market. Considerable deviations from the expectations can cause market moving impacts.<br><br>In this paper, the total U.S. nonfarm payroll employment is predicted before the release of the BLS employment report. The content herein outlines the process for extracting predictive features from the aggregated payroll data and training machine learning models to make accurate predictions. Publicly available revised employment report by BLS is used as a benchmark. Trained models show excellent behaviour with R 2 of 0.9985 and 99.99% directional accuracy on out of sample periods from January 2012 to March 2020.<br><br>CCS Concepts<br>• Applied Computing methodologies➝Machine Learning.<br>","PeriodicalId":241211,"journal":{"name":"CompSciRN: Artificial Intelligence (Topic)","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Nonfarm Employment\",\"authors\":\"Tarun Bhatia\",\"doi\":\"10.2139/ssrn.3683459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"U.S. Nonfarm employment is considered one of the key indicators for assessing the state of the labor market. Considerable deviations from the expectations can cause market moving impacts.<br><br>In this paper, the total U.S. nonfarm payroll employment is predicted before the release of the BLS employment report. The content herein outlines the process for extracting predictive features from the aggregated payroll data and training machine learning models to make accurate predictions. Publicly available revised employment report by BLS is used as a benchmark. Trained models show excellent behaviour with R 2 of 0.9985 and 99.99% directional accuracy on out of sample periods from January 2012 to March 2020.<br><br>CCS Concepts<br>• Applied Computing methodologies➝Machine Learning.<br>\",\"PeriodicalId\":241211,\"journal\":{\"name\":\"CompSciRN: Artificial Intelligence (Topic)\",\"volume\":\"197 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CompSciRN: Artificial Intelligence (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3683459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompSciRN: Artificial Intelligence (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3683459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

美国非农就业被认为是评估劳动力市场状况的关键指标之一。与预期有相当大的偏差会对市场产生影响。本文在美国劳工统计局发布就业报告之前对美国非农就业总人数进行了预测。本文的内容概述了从汇总工资数据中提取预测特征和训练机器学习模型以做出准确预测的过程。美国劳工统计局公布的经修订的就业报告被用作基准。经过训练的模型在2012年1月至2020年3月的样本外周期中表现出出色的行为,r2为0.9985,方向精度为99.99%。应用计算方法学
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Nonfarm Employment
U.S. Nonfarm employment is considered one of the key indicators for assessing the state of the labor market. Considerable deviations from the expectations can cause market moving impacts.

In this paper, the total U.S. nonfarm payroll employment is predicted before the release of the BLS employment report. The content herein outlines the process for extracting predictive features from the aggregated payroll data and training machine learning models to make accurate predictions. Publicly available revised employment report by BLS is used as a benchmark. Trained models show excellent behaviour with R 2 of 0.9985 and 99.99% directional accuracy on out of sample periods from January 2012 to March 2020.

CCS Concepts
• Applied Computing methodologies➝Machine Learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信