布尔函数上的生长树分布

B. Chauvin, Danièle Gardy, Cécile Mailler
{"title":"布尔函数上的生长树分布","authors":"B. Chauvin, Danièle Gardy, Cécile Mailler","doi":"10.1137/1.9781611973013.5","DOIUrl":null,"url":null,"abstract":"We define a probability distribution over the set of Boolean functions of k variables induced by the tree representation of Boolean expressions. The law we are interested in is inspired by the growth model of Binary Search Trees: we call it the growing tree law. We study it over different logical systems and compare the results we obtain to already known distributions induced by the tree representation: Catalan trees, Galton-Watson trees and balanced trees.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The Growing Trees Distribution on Boolean Functions\",\"authors\":\"B. Chauvin, Danièle Gardy, Cécile Mailler\",\"doi\":\"10.1137/1.9781611973013.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a probability distribution over the set of Boolean functions of k variables induced by the tree representation of Boolean expressions. The law we are interested in is inspired by the growth model of Binary Search Trees: we call it the growing tree law. We study it over different logical systems and compare the results we obtain to already known distributions induced by the tree representation: Catalan trees, Galton-Watson trees and balanced trees.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611973013.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611973013.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们定义了由布尔表达式的树形表示导出的k变量布尔函数集合上的概率分布。我们感兴趣的定律是受到二叉搜索树的生长模型的启发:我们称之为生长树定律。我们在不同的逻辑系统上研究它,并将我们得到的结果与由树表示引起的已知分布进行比较:Catalan树,Galton-Watson树和平衡树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Growing Trees Distribution on Boolean Functions
We define a probability distribution over the set of Boolean functions of k variables induced by the tree representation of Boolean expressions. The law we are interested in is inspired by the growth model of Binary Search Trees: we call it the growing tree law. We study it over different logical systems and compare the results we obtain to already known distributions induced by the tree representation: Catalan trees, Galton-Watson trees and balanced trees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信