{"title":"2边/点连通诱导子图枚举的线性延迟算法","authors":"Takumi Tada, Kazuya Haraguchi","doi":"10.48550/arXiv.2302.05526","DOIUrl":null,"url":null,"abstract":"For a set system $(V,{\\mathcal C}\\subseteq 2^V)$, we call a subset $C\\in{\\mathcal C}$ a component. A nonempty subset $Y\\subseteq C$ is a minimal removable set (MRS) of $C$ if $C\\setminus Y\\in{\\mathcal C}$ and no proper nonempty subset $Z\\subsetneq Y$ satisfies $C\\setminus Z\\in{\\mathcal C}$. In this paper, we consider the problem of enumerating all components in a set system such that, for every two components $C,C'\\in{\\mathcal C}$ with $C'\\subsetneq C$, every MRS $X$ of $C$ satisfies either $X\\subseteq C'$ or $X\\cap C'=\\emptyset$. We provide a partition-based algorithm for this problem, which yields the first linear delay algorithms to enumerate all 2-edge-connected induced subgraphs, and to enumerate all 2-vertex-connected induced subgraphs.","PeriodicalId":403593,"journal":{"name":"International Workshop on Combinatorial Algorithms","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Linear Delay Algorithm for Enumeration of 2-Edge/Vertex-connected Induced Subgraphs\",\"authors\":\"Takumi Tada, Kazuya Haraguchi\",\"doi\":\"10.48550/arXiv.2302.05526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a set system $(V,{\\\\mathcal C}\\\\subseteq 2^V)$, we call a subset $C\\\\in{\\\\mathcal C}$ a component. A nonempty subset $Y\\\\subseteq C$ is a minimal removable set (MRS) of $C$ if $C\\\\setminus Y\\\\in{\\\\mathcal C}$ and no proper nonempty subset $Z\\\\subsetneq Y$ satisfies $C\\\\setminus Z\\\\in{\\\\mathcal C}$. In this paper, we consider the problem of enumerating all components in a set system such that, for every two components $C,C'\\\\in{\\\\mathcal C}$ with $C'\\\\subsetneq C$, every MRS $X$ of $C$ satisfies either $X\\\\subseteq C'$ or $X\\\\cap C'=\\\\emptyset$. We provide a partition-based algorithm for this problem, which yields the first linear delay algorithms to enumerate all 2-edge-connected induced subgraphs, and to enumerate all 2-vertex-connected induced subgraphs.\",\"PeriodicalId\":403593,\"journal\":{\"name\":\"International Workshop on Combinatorial Algorithms\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Combinatorial Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2302.05526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Combinatorial Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.05526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Linear Delay Algorithm for Enumeration of 2-Edge/Vertex-connected Induced Subgraphs
For a set system $(V,{\mathcal C}\subseteq 2^V)$, we call a subset $C\in{\mathcal C}$ a component. A nonempty subset $Y\subseteq C$ is a minimal removable set (MRS) of $C$ if $C\setminus Y\in{\mathcal C}$ and no proper nonempty subset $Z\subsetneq Y$ satisfies $C\setminus Z\in{\mathcal C}$. In this paper, we consider the problem of enumerating all components in a set system such that, for every two components $C,C'\in{\mathcal C}$ with $C'\subsetneq C$, every MRS $X$ of $C$ satisfies either $X\subseteq C'$ or $X\cap C'=\emptyset$. We provide a partition-based algorithm for this problem, which yields the first linear delay algorithms to enumerate all 2-edge-connected induced subgraphs, and to enumerate all 2-vertex-connected induced subgraphs.