基于大数据集学习检测器的视频监控对象检索

R. Feris, Sharath Pankanti, Behjat Siddiquie
{"title":"基于大数据集学习检测器的视频监控对象检索","authors":"R. Feris, Sharath Pankanti, Behjat Siddiquie","doi":"10.1109/ICME.2012.132","DOIUrl":null,"url":null,"abstract":"We address the problem of learning robust and efficient multi-view object detectors for surveillance video indexing and retrieval. Our philosophy is that effective solutions for this problem can be obtained by learning detectors from huge amounts of training data. Along this research direction, we propose a novel approach that consists of strategically partitioning the training set and learning a large array of complementary, compact, deep cascade detectors. At test time, given a video sequence captured by a fixed camera, a small number of detectors is automatically selected per image location. We demonstrate our approach on the problem of vehicle detection in challenging surveillance scenarios, using a large training dataset composed of around one million images. Our system runs at an impressive average rate of 125 frames per second on a conventional laptop computer.","PeriodicalId":273567,"journal":{"name":"2012 IEEE International Conference on Multimedia and Expo","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Learning Detectors from Large Datasets for Object Retrieval in Video Surveillance\",\"authors\":\"R. Feris, Sharath Pankanti, Behjat Siddiquie\",\"doi\":\"10.1109/ICME.2012.132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of learning robust and efficient multi-view object detectors for surveillance video indexing and retrieval. Our philosophy is that effective solutions for this problem can be obtained by learning detectors from huge amounts of training data. Along this research direction, we propose a novel approach that consists of strategically partitioning the training set and learning a large array of complementary, compact, deep cascade detectors. At test time, given a video sequence captured by a fixed camera, a small number of detectors is automatically selected per image location. We demonstrate our approach on the problem of vehicle detection in challenging surveillance scenarios, using a large training dataset composed of around one million images. Our system runs at an impressive average rate of 125 frames per second on a conventional laptop computer.\",\"PeriodicalId\":273567,\"journal\":{\"name\":\"2012 IEEE International Conference on Multimedia and Expo\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2012.132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2012.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们解决了学习鲁棒和高效的多视图目标检测器用于监控视频索引和检索的问题。我们的理念是,这个问题的有效解决方案可以通过从大量的训练数据中学习检测器来获得。沿着这个研究方向,我们提出了一种新的方法,该方法包括战略性地划分训练集并学习大量互补,紧凑,深度级联检测器。在测试时,给定由固定摄像机捕获的视频序列,每个图像位置自动选择少量检测器。我们使用由大约一百万张图像组成的大型训练数据集,展示了我们在具有挑战性的监视场景中车辆检测问题的方法。我们的系统在传统笔记本电脑上以每秒125帧的惊人平均速率运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Detectors from Large Datasets for Object Retrieval in Video Surveillance
We address the problem of learning robust and efficient multi-view object detectors for surveillance video indexing and retrieval. Our philosophy is that effective solutions for this problem can be obtained by learning detectors from huge amounts of training data. Along this research direction, we propose a novel approach that consists of strategically partitioning the training set and learning a large array of complementary, compact, deep cascade detectors. At test time, given a video sequence captured by a fixed camera, a small number of detectors is automatically selected per image location. We demonstrate our approach on the problem of vehicle detection in challenging surveillance scenarios, using a large training dataset composed of around one million images. Our system runs at an impressive average rate of 125 frames per second on a conventional laptop computer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信