Kerem Kaya, Kemal Ozanoglu, Y. Kahya, Günhan Dündar
{"title":"生物医学信号采集的可编程开关电容滤波器设计工具","authors":"Kerem Kaya, Kemal Ozanoglu, Y. Kahya, Günhan Dündar","doi":"10.1109/SMACD58065.2023.10192182","DOIUrl":null,"url":null,"abstract":"This paper presents an open source design support tool for a respiratory and cardiac signal acquisition system that utilizes programmable switched-capacitor analog filters in the analog front end. The proposed filter topologies are based on cascaded second-order-section filters and are designed to be programmable in terms of the cut-off frequency via the switching frequency. The design support tool is written in Python and is capable of calculating the capacitance ratios for a given second-order filter topology, generating a parameter file, and performing periodic AC simulations of the designed circuit in SpectreRF. The tool uses a simple estimation algorithm to find the best possible integer fit with an error cost function. Two sets of 6th-order switched-capacitor filter sets are designed using biquadratic sections in 180nm CMOS process. The proposed design methodology offers a better area fraction reduction compared to simple integer ratio designs. Post-layout simulation results demonstrate the effectiveness and efficiency of the proposed design support tool for switched-capacitor analog filters in respiratory and cardiac signal acquisition systems.","PeriodicalId":239306,"journal":{"name":"2023 19th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Programmable Switched-Capacitor Filter Design Tool for Biomedical Signal Acquisition\",\"authors\":\"Kerem Kaya, Kemal Ozanoglu, Y. Kahya, Günhan Dündar\",\"doi\":\"10.1109/SMACD58065.2023.10192182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an open source design support tool for a respiratory and cardiac signal acquisition system that utilizes programmable switched-capacitor analog filters in the analog front end. The proposed filter topologies are based on cascaded second-order-section filters and are designed to be programmable in terms of the cut-off frequency via the switching frequency. The design support tool is written in Python and is capable of calculating the capacitance ratios for a given second-order filter topology, generating a parameter file, and performing periodic AC simulations of the designed circuit in SpectreRF. The tool uses a simple estimation algorithm to find the best possible integer fit with an error cost function. Two sets of 6th-order switched-capacitor filter sets are designed using biquadratic sections in 180nm CMOS process. The proposed design methodology offers a better area fraction reduction compared to simple integer ratio designs. Post-layout simulation results demonstrate the effectiveness and efficiency of the proposed design support tool for switched-capacitor analog filters in respiratory and cardiac signal acquisition systems.\",\"PeriodicalId\":239306,\"journal\":{\"name\":\"2023 19th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 19th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMACD58065.2023.10192182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 19th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMACD58065.2023.10192182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Programmable Switched-Capacitor Filter Design Tool for Biomedical Signal Acquisition
This paper presents an open source design support tool for a respiratory and cardiac signal acquisition system that utilizes programmable switched-capacitor analog filters in the analog front end. The proposed filter topologies are based on cascaded second-order-section filters and are designed to be programmable in terms of the cut-off frequency via the switching frequency. The design support tool is written in Python and is capable of calculating the capacitance ratios for a given second-order filter topology, generating a parameter file, and performing periodic AC simulations of the designed circuit in SpectreRF. The tool uses a simple estimation algorithm to find the best possible integer fit with an error cost function. Two sets of 6th-order switched-capacitor filter sets are designed using biquadratic sections in 180nm CMOS process. The proposed design methodology offers a better area fraction reduction compared to simple integer ratio designs. Post-layout simulation results demonstrate the effectiveness and efficiency of the proposed design support tool for switched-capacitor analog filters in respiratory and cardiac signal acquisition systems.