基于远程空间依赖建模的城市人群流量预测的上下文感知时空神经网络

Jie Feng, Yong Li, Ziqian Lin, Can Rong, Funing Sun, Diansheng Guo, Depeng Jin
{"title":"基于远程空间依赖建模的城市人群流量预测的上下文感知时空神经网络","authors":"Jie Feng, Yong Li, Ziqian Lin, Can Rong, Funing Sun, Diansheng Guo, Depeng Jin","doi":"10.1145/3477577","DOIUrl":null,"url":null,"abstract":"Crowd flow prediction is of great importance in a wide range of applications from urban planning, traffic control to public safety. It aims at predicting the inflow (the traffic of crowds entering a region in a given time interval) and outflow (the traffic of crowds leaving a region for other places) of each region in the city with knowing the historical flow data. In this article, we propose DeepSTN+, a deep learning-based convolutional model, to predict crowd flows in the metropolis. First, DeepSTN+ employs the ConvPlus structure to model the long-range spatial dependence among crowd flows in different regions. Further, PoI distributions and time factor are combined to express the effect of location attributes to introduce prior knowledge of the crowd movements. Finally, we propose a temporal attention-based fusion mechanism to stabilize the training process, which further improves the performance. Extensive experimental results based on four real-life datasets demonstrate the superiority of our model, i.e., DeepSTN+ reduces the error of the crowd flow prediction by approximately 10%–21% compared with the state-of-the-art baselines.","PeriodicalId":435653,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data (TKDD)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Context-aware Spatial-Temporal Neural Network for Citywide Crowd Flow Prediction via Modeling Long-range Spatial Dependency\",\"authors\":\"Jie Feng, Yong Li, Ziqian Lin, Can Rong, Funing Sun, Diansheng Guo, Depeng Jin\",\"doi\":\"10.1145/3477577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crowd flow prediction is of great importance in a wide range of applications from urban planning, traffic control to public safety. It aims at predicting the inflow (the traffic of crowds entering a region in a given time interval) and outflow (the traffic of crowds leaving a region for other places) of each region in the city with knowing the historical flow data. In this article, we propose DeepSTN+, a deep learning-based convolutional model, to predict crowd flows in the metropolis. First, DeepSTN+ employs the ConvPlus structure to model the long-range spatial dependence among crowd flows in different regions. Further, PoI distributions and time factor are combined to express the effect of location attributes to introduce prior knowledge of the crowd movements. Finally, we propose a temporal attention-based fusion mechanism to stabilize the training process, which further improves the performance. Extensive experimental results based on four real-life datasets demonstrate the superiority of our model, i.e., DeepSTN+ reduces the error of the crowd flow prediction by approximately 10%–21% compared with the state-of-the-art baselines.\",\"PeriodicalId\":435653,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data (TKDD)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data (TKDD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3477577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data (TKDD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3477577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

人群流量预测在城市规划、交通控制、公共安全等领域有着广泛的应用。它的目的是在了解历史流量数据的情况下,预测城市各个区域的流入(在给定时间间隔内进入一个区域的人群流量)和流出(离开一个区域前往其他地方的人群流量)。在本文中,我们提出了一种基于深度学习的卷积模型DeepSTN+来预测大都市的人群流量。首先,DeepSTN+采用ConvPlus结构对不同区域人群流动之间的长期空间依赖关系进行建模。进一步,结合PoI分布和时间因子来表达位置属性的影响,引入人群运动的先验知识。最后,我们提出了一种基于时间注意力的融合机制来稳定训练过程,进一步提高了性能。基于四个真实数据集的大量实验结果证明了我们模型的优越性,即与最先进的基线相比,DeepSTN+将人群流量预测的误差降低了约10%-21%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-aware Spatial-Temporal Neural Network for Citywide Crowd Flow Prediction via Modeling Long-range Spatial Dependency
Crowd flow prediction is of great importance in a wide range of applications from urban planning, traffic control to public safety. It aims at predicting the inflow (the traffic of crowds entering a region in a given time interval) and outflow (the traffic of crowds leaving a region for other places) of each region in the city with knowing the historical flow data. In this article, we propose DeepSTN+, a deep learning-based convolutional model, to predict crowd flows in the metropolis. First, DeepSTN+ employs the ConvPlus structure to model the long-range spatial dependence among crowd flows in different regions. Further, PoI distributions and time factor are combined to express the effect of location attributes to introduce prior knowledge of the crowd movements. Finally, we propose a temporal attention-based fusion mechanism to stabilize the training process, which further improves the performance. Extensive experimental results based on four real-life datasets demonstrate the superiority of our model, i.e., DeepSTN+ reduces the error of the crowd flow prediction by approximately 10%–21% compared with the state-of-the-art baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信