Fakultas Teknik, Ristirianto Adi
{"title":"Deteksi Api pada Video dengan Gaussian Mixture Model Untuk Deteksi Gerakan Dan Segmentasi Warna Api Dalam Ruang Warna YCbCr","authors":"Fakultas Teknik, Ristirianto Adi","doi":"10.29303/JTIKA.V3I1.125","DOIUrl":null,"url":null,"abstract":"Fire is a disaster that can endanger lives and cause property loss. The solution to detect fire that is commonly used today is to use a sensor. Fire sensors can be used together with surveillance cameras (CCTV) which are now being installed in many office buildings. This study tries to build a model for detecting fire in video with a digital image processing approach using the Gaussian Mixture Model for motion detection and fire color segmentation in the YCbCr color space. The model is then tested with metrics for accuracy, precision, recall, and processing speed. The dataset used is in the form of videos with small, medium, large fire sizes, and videos that only have fire-like objects. The test results show that the algorithm is able to detect fire when the size of the fire is not too small or the position of the fire is close enough to the camera. For videos with a resolution of 800x600 and a framerate of 30 fps, it can achieve 66.89% accuracy, 73.77% precision, and 66.66% recall. The performance during the day is relatively better than at night. Algorithm processing speed is too slow to be implemented in real-time","PeriodicalId":197519,"journal":{"name":"Jurnal Teknologi Informasi, Komputer, dan Aplikasinya (JTIKA )","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Informasi, Komputer, dan Aplikasinya (JTIKA )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29303/JTIKA.V3I1.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

火灾是一种危及生命和造成财产损失的灾难。目前常用的探测火灾的解决方案是使用传感器。火灾传感器可以与监控摄像头(CCTV)一起使用,现在许多办公大楼都安装了监控摄像头。本研究尝试利用高斯混合模型在YCbCr色彩空间中进行运动检测和火焰颜色分割,利用数字图像处理方法构建视频中火灾检测模型。然后使用准确性、精度、召回率和处理速度等指标对模型进行测试。使用的数据集是小、中、大火灾大小的视频,以及只有类似火的物体的视频。测试结果表明,该算法能够在火灾规模不太小或火灾位置离摄像机足够近的情况下检测到火灾。对于分辨率为800x600,帧率为30fps的视频,准确率为66.89%,准确率为73.77%,召回率为66.66%。白天的表现相对好于晚上。算法处理速度太慢,无法实时实现
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deteksi Api pada Video dengan Gaussian Mixture Model Untuk Deteksi Gerakan Dan Segmentasi Warna Api Dalam Ruang Warna YCbCr
Fire is a disaster that can endanger lives and cause property loss. The solution to detect fire that is commonly used today is to use a sensor. Fire sensors can be used together with surveillance cameras (CCTV) which are now being installed in many office buildings. This study tries to build a model for detecting fire in video with a digital image processing approach using the Gaussian Mixture Model for motion detection and fire color segmentation in the YCbCr color space. The model is then tested with metrics for accuracy, precision, recall, and processing speed. The dataset used is in the form of videos with small, medium, large fire sizes, and videos that only have fire-like objects. The test results show that the algorithm is able to detect fire when the size of the fire is not too small or the position of the fire is close enough to the camera. For videos with a resolution of 800x600 and a framerate of 30 fps, it can achieve 66.89% accuracy, 73.77% precision, and 66.66% recall. The performance during the day is relatively better than at night. Algorithm processing speed is too slow to be implemented in real-time
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信