使用字节对齐的ANS编码和二维上下文的索引压缩

Alistair Moffat, M. Petri
{"title":"使用字节对齐的ANS编码和二维上下文的索引压缩","authors":"Alistair Moffat, M. Petri","doi":"10.1145/3159652.3159663","DOIUrl":null,"url":null,"abstract":"We examine approaches used for block-based inverted index compression, such as the OptPFOR mechanism, in which fixed-length blocks of postings data are compressed independently of each other. Building on previous work in which asymmetric numeral systems (ANS) entropy coding is used to represent each block, we explore a number of enhancements: (i) the use of two-dimensional conditioning contexts, with two aggregate parameters used in each block to categorize the distribution of symbol values that underlies the ANS approach, rather than just one; (ii) the use of a byte-friendly strategic mapping from symbols to ANS codeword buckets; and (iii) the use of a context merging process to combine similar probability distributions. Collectively, these improvements yield superior compression for index data, outperforming the reference point set by the Interp mechanism, and hence representing a significant step forward. We describe experiments using the 426 GiB gov2 collection and a new large collection of publicly-available news articles to demonstrate that claim, and provide query evaluation throughput rates compared to other block-based mechanisms.","PeriodicalId":401247,"journal":{"name":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Index Compression Using Byte-Aligned ANS Coding and Two-Dimensional Contexts\",\"authors\":\"Alistair Moffat, M. Petri\",\"doi\":\"10.1145/3159652.3159663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine approaches used for block-based inverted index compression, such as the OptPFOR mechanism, in which fixed-length blocks of postings data are compressed independently of each other. Building on previous work in which asymmetric numeral systems (ANS) entropy coding is used to represent each block, we explore a number of enhancements: (i) the use of two-dimensional conditioning contexts, with two aggregate parameters used in each block to categorize the distribution of symbol values that underlies the ANS approach, rather than just one; (ii) the use of a byte-friendly strategic mapping from symbols to ANS codeword buckets; and (iii) the use of a context merging process to combine similar probability distributions. Collectively, these improvements yield superior compression for index data, outperforming the reference point set by the Interp mechanism, and hence representing a significant step forward. We describe experiments using the 426 GiB gov2 collection and a new large collection of publicly-available news articles to demonstrate that claim, and provide query evaluation throughput rates compared to other block-based mechanisms.\",\"PeriodicalId\":401247,\"journal\":{\"name\":\"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3159652.3159663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3159652.3159663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

我们研究了用于基于块的倒排索引压缩的方法,例如OptPFOR机制,其中固定长度的发布数据块相互独立地压缩。在先前使用非对称数字系统(ANS)熵编码来表示每个块的工作的基础上,我们探索了许多增强功能:(i)使用二维条件上下文,在每个块中使用两个聚合参数来对ANS方法基础的符号值分布进行分类,而不仅仅是一个;(ii)使用从符号到ANS码字桶的字节友好策略映射;(iii)使用上下文合并过程来组合相似的概率分布。总的来说,这些改进为索引数据提供了更好的压缩,性能优于Interp机制设置的参考点,因此是向前迈出的重要一步。我们描述了使用426gib的gov2集合和一个新的大型公开新闻文章集合的实验,以证明这一说法,并提供了与其他基于块的机制相比的查询评估吞吐率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Index Compression Using Byte-Aligned ANS Coding and Two-Dimensional Contexts
We examine approaches used for block-based inverted index compression, such as the OptPFOR mechanism, in which fixed-length blocks of postings data are compressed independently of each other. Building on previous work in which asymmetric numeral systems (ANS) entropy coding is used to represent each block, we explore a number of enhancements: (i) the use of two-dimensional conditioning contexts, with two aggregate parameters used in each block to categorize the distribution of symbol values that underlies the ANS approach, rather than just one; (ii) the use of a byte-friendly strategic mapping from symbols to ANS codeword buckets; and (iii) the use of a context merging process to combine similar probability distributions. Collectively, these improvements yield superior compression for index data, outperforming the reference point set by the Interp mechanism, and hence representing a significant step forward. We describe experiments using the 426 GiB gov2 collection and a new large collection of publicly-available news articles to demonstrate that claim, and provide query evaluation throughput rates compared to other block-based mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信