用于生物医学应用的微流体探针的快速原型设计

Ayoola T. Brimmo, Roaa Alnemari, M. Qasaimeh
{"title":"用于生物医学应用的微流体探针的快速原型设计","authors":"Ayoola T. Brimmo, Roaa Alnemari, M. Qasaimeh","doi":"10.1109/ICASET.2018.8376894","DOIUrl":null,"url":null,"abstract":"The microfluidic probe (MFP) is an open space microfluidic device that combines the concepts of hydrodynamic flow confinement (HFC) and scanning probes to overcome the closed channel restrictions of conventional microfluidic devices. In biology, this allows for analysis of mammalian cells, neurons and tissue samples that are otherwise difficult to culture in conventional microfluidic devices. In this paper, we demonstrate how 3-D printing can be used to expedite the design-test cycle of the MFP and hence democratize the concept. The 3D printing procedures were adapted in fabricating the MFPs that were used for all experiments. Characterization of MFP's flow profile footprints are performed by comparisons with numerically calculated profiles. Application of the MFP is then used to selectively label adherent cells cultured in a Petri dish, within their conventional culture environment. Results show that while the 3D printed probes contain some artifacts, they function just as well as MFPs microfabricated using conventional techniques. Overall, this fabrication demonstrates a rapid, easy, and affordable fabrication technique for the MFP.","PeriodicalId":328866,"journal":{"name":"2018 Advances in Science and Engineering Technology International Conferences (ASET)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid prototyping of microfluidic probes for biomedical applications\",\"authors\":\"Ayoola T. Brimmo, Roaa Alnemari, M. Qasaimeh\",\"doi\":\"10.1109/ICASET.2018.8376894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The microfluidic probe (MFP) is an open space microfluidic device that combines the concepts of hydrodynamic flow confinement (HFC) and scanning probes to overcome the closed channel restrictions of conventional microfluidic devices. In biology, this allows for analysis of mammalian cells, neurons and tissue samples that are otherwise difficult to culture in conventional microfluidic devices. In this paper, we demonstrate how 3-D printing can be used to expedite the design-test cycle of the MFP and hence democratize the concept. The 3D printing procedures were adapted in fabricating the MFPs that were used for all experiments. Characterization of MFP's flow profile footprints are performed by comparisons with numerically calculated profiles. Application of the MFP is then used to selectively label adherent cells cultured in a Petri dish, within their conventional culture environment. Results show that while the 3D printed probes contain some artifacts, they function just as well as MFPs microfabricated using conventional techniques. Overall, this fabrication demonstrates a rapid, easy, and affordable fabrication technique for the MFP.\",\"PeriodicalId\":328866,\"journal\":{\"name\":\"2018 Advances in Science and Engineering Technology International Conferences (ASET)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Advances in Science and Engineering Technology International Conferences (ASET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASET.2018.8376894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Advances in Science and Engineering Technology International Conferences (ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASET.2018.8376894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微流控探头(MFP)是一种开放空间的微流控装置,它结合了流体动力约束(HFC)和扫描探头的概念,克服了传统微流控装置封闭通道的限制。在生物学中,这允许分析哺乳动物细胞、神经元和组织样本,否则难以在传统的微流体装置中培养。在本文中,我们展示了如何使用3d打印来加快MFP的设计测试周期,从而使这一概念民主化。3D打印程序适用于制造用于所有实验的mfp。通过与数值计算的流型进行比较,表征了MFP的流型足迹。然后使用MFP选择性地标记培养皿中培养的贴壁细胞,在其常规培养环境中。结果表明,虽然3D打印探针包含一些人工制品,但它们的功能与使用传统技术微制造的mfp一样好。总的来说,这种制造展示了一种快速、简单、经济的MFP制造技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid prototyping of microfluidic probes for biomedical applications
The microfluidic probe (MFP) is an open space microfluidic device that combines the concepts of hydrodynamic flow confinement (HFC) and scanning probes to overcome the closed channel restrictions of conventional microfluidic devices. In biology, this allows for analysis of mammalian cells, neurons and tissue samples that are otherwise difficult to culture in conventional microfluidic devices. In this paper, we demonstrate how 3-D printing can be used to expedite the design-test cycle of the MFP and hence democratize the concept. The 3D printing procedures were adapted in fabricating the MFPs that were used for all experiments. Characterization of MFP's flow profile footprints are performed by comparisons with numerically calculated profiles. Application of the MFP is then used to selectively label adherent cells cultured in a Petri dish, within their conventional culture environment. Results show that while the 3D printed probes contain some artifacts, they function just as well as MFPs microfabricated using conventional techniques. Overall, this fabrication demonstrates a rapid, easy, and affordable fabrication technique for the MFP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信