地表水流动的有效水力模型的应用

Hind Talbi, Mohammed Jeyar, E. Chaabelasri, E. Imad, N. Salhi
{"title":"地表水流动的有效水力模型的应用","authors":"Hind Talbi, Mohammed Jeyar, E. Chaabelasri, E. Imad, N. Salhi","doi":"10.1109/ISACS48493.2019.9068888","DOIUrl":null,"url":null,"abstract":"In this work, we consider the numerical simulation of free flow by numerical resolution of saint-venant's equations, which form a nonlinear hyperbolic system. The numerical approximation model equation is discretized by the finite volume method, the computational mesh is unstructured triangular and dynamically adaptive. The numerical adjective flows were evaluated by Roe approximate Riemann solver, the time integration is meant for a Runge-Kutta. The source term was discretized by an upwinding scheme of Vazquez.","PeriodicalId":312521,"journal":{"name":"2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of an efficient hydraulic model for surface water flows\",\"authors\":\"Hind Talbi, Mohammed Jeyar, E. Chaabelasri, E. Imad, N. Salhi\",\"doi\":\"10.1109/ISACS48493.2019.9068888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we consider the numerical simulation of free flow by numerical resolution of saint-venant's equations, which form a nonlinear hyperbolic system. The numerical approximation model equation is discretized by the finite volume method, the computational mesh is unstructured triangular and dynamically adaptive. The numerical adjective flows were evaluated by Roe approximate Riemann solver, the time integration is meant for a Runge-Kutta. The source term was discretized by an upwinding scheme of Vazquez.\",\"PeriodicalId\":312521,\"journal\":{\"name\":\"2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISACS48493.2019.9068888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACS48493.2019.9068888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们考虑了自由流动的数值模拟的saint-venant的方程,它形成一个非线性双曲系统的数值解析。数值逼近模型方程采用有限体积法离散化,计算网格为非结构三角形,具有动态自适应能力。采用Roe近似Riemann求解器对数值形容词流进行求解,对龙格-库塔流进行时间积分。源项采用Vazquez上旋格式离散化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of an efficient hydraulic model for surface water flows
In this work, we consider the numerical simulation of free flow by numerical resolution of saint-venant's equations, which form a nonlinear hyperbolic system. The numerical approximation model equation is discretized by the finite volume method, the computational mesh is unstructured triangular and dynamically adaptive. The numerical adjective flows were evaluated by Roe approximate Riemann solver, the time integration is meant for a Runge-Kutta. The source term was discretized by an upwinding scheme of Vazquez.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信