基于发音特征的TDNN模型用于口语识别

Jiawei Yu, Minghao Guo, Yanlu Xie, Jinsong Zhang
{"title":"基于发音特征的TDNN模型用于口语识别","authors":"Jiawei Yu, Minghao Guo, Yanlu Xie, Jinsong Zhang","doi":"10.1109/IALP48816.2019.9037566","DOIUrl":null,"url":null,"abstract":"In order to improve the performance of the Spoken Language Recognition (SLR) system, we propose an acoustic modeling framework in which the Time Delay Neural Network (TDNN) models long term dependencies between Articulatory Features (AFs). Several experiments were conducted on APSIPA 2017 Oriental Language Recognition(AP17-OLR) database. We compared the AFs based TDNN approach to the Deep Bottleneck (DBN) features based ivector and xvector systems, and the proposed approach provide a 23.10% and 12.87% relative improvement in Equal Error Rate (EER). These results indicate that the proposed approach is beneficial to the SLR task.","PeriodicalId":208066,"journal":{"name":"2019 International Conference on Asian Language Processing (IALP)","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Articulatory Features Based TDNN Model for Spoken Language Recognition\",\"authors\":\"Jiawei Yu, Minghao Guo, Yanlu Xie, Jinsong Zhang\",\"doi\":\"10.1109/IALP48816.2019.9037566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the performance of the Spoken Language Recognition (SLR) system, we propose an acoustic modeling framework in which the Time Delay Neural Network (TDNN) models long term dependencies between Articulatory Features (AFs). Several experiments were conducted on APSIPA 2017 Oriental Language Recognition(AP17-OLR) database. We compared the AFs based TDNN approach to the Deep Bottleneck (DBN) features based ivector and xvector systems, and the proposed approach provide a 23.10% and 12.87% relative improvement in Equal Error Rate (EER). These results indicate that the proposed approach is beneficial to the SLR task.\",\"PeriodicalId\":208066,\"journal\":{\"name\":\"2019 International Conference on Asian Language Processing (IALP)\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP48816.2019.9037566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP48816.2019.9037566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为了提高口语识别(SLR)系统的性能,我们提出了一个声学建模框架,其中时延神经网络(TDNN)建模发音特征(AFs)之间的长期依赖关系。在APSIPA 2017东方语言识别(AP17-OLR)数据库上进行了多项实验。我们将基于AFs的TDNN方法与基于深度瓶颈(DBN)特征的向量和xvector系统进行了比较,提出的方法在等错误率(EER)方面提供了23.10%和12.87%的相对改进。结果表明,该方法有利于单反任务的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Articulatory Features Based TDNN Model for Spoken Language Recognition
In order to improve the performance of the Spoken Language Recognition (SLR) system, we propose an acoustic modeling framework in which the Time Delay Neural Network (TDNN) models long term dependencies between Articulatory Features (AFs). Several experiments were conducted on APSIPA 2017 Oriental Language Recognition(AP17-OLR) database. We compared the AFs based TDNN approach to the Deep Bottleneck (DBN) features based ivector and xvector systems, and the proposed approach provide a 23.10% and 12.87% relative improvement in Equal Error Rate (EER). These results indicate that the proposed approach is beneficial to the SLR task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信