心音图记录中基于特征的心动周期分割

Jussi Taipalmaa, M. Zabihi, S. Kiranyaz, M. Gabbouj
{"title":"心音图记录中基于特征的心动周期分割","authors":"Jussi Taipalmaa, M. Zabihi, S. Kiranyaz, M. Gabbouj","doi":"10.22489/CinC.2018.222","DOIUrl":null,"url":null,"abstract":"Phonocardiogram (PCG) conveys crucial information for cardiac health evaluation in ambulatory care and is an essential diagnostic test for heart assessment. Thus, identification and positioning of the first and second heart sound within PCG is a vital step in automatic heart sound analysis. This study proposes a solution for individual cardiac cycle segmentation of PCG recordings. It extracts a rich set of features that are used for the segmentation of each cardiac cycle in a PCG recording by localizing the PCG peaks, S1 and S2. To accomplish this objective, a rich set of 66 discriminative features are selected and extracted from each frame in a PCG recording and several classifiers are evaluated to find out the one that achieves the highest segmentation accuracy. Finally, a post-processing method is proposed to reduce the classification noise and hence improve the segmentation performance Contrary to the earlier methods proposed in the literature, this method is evaluated on one of the largest datasets available consisting of 48 877s PCG recordings. The proposed method has achieved F1-score of 93.45%, and Sensitivity and Specificity values of 94.23% and 98.16% respectively. Moreover, it has been tested on the Pascal benchmark dataset, and has achieved Sensitivity and Specificity values of 96.42% and 98.12%, respectively.","PeriodicalId":215521,"journal":{"name":"2018 Computing in Cardiology Conference (CinC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature-Based Cardiac Cycle Segmentation in Phonocardiogram Recordings\",\"authors\":\"Jussi Taipalmaa, M. Zabihi, S. Kiranyaz, M. Gabbouj\",\"doi\":\"10.22489/CinC.2018.222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phonocardiogram (PCG) conveys crucial information for cardiac health evaluation in ambulatory care and is an essential diagnostic test for heart assessment. Thus, identification and positioning of the first and second heart sound within PCG is a vital step in automatic heart sound analysis. This study proposes a solution for individual cardiac cycle segmentation of PCG recordings. It extracts a rich set of features that are used for the segmentation of each cardiac cycle in a PCG recording by localizing the PCG peaks, S1 and S2. To accomplish this objective, a rich set of 66 discriminative features are selected and extracted from each frame in a PCG recording and several classifiers are evaluated to find out the one that achieves the highest segmentation accuracy. Finally, a post-processing method is proposed to reduce the classification noise and hence improve the segmentation performance Contrary to the earlier methods proposed in the literature, this method is evaluated on one of the largest datasets available consisting of 48 877s PCG recordings. The proposed method has achieved F1-score of 93.45%, and Sensitivity and Specificity values of 94.23% and 98.16% respectively. Moreover, it has been tested on the Pascal benchmark dataset, and has achieved Sensitivity and Specificity values of 96.42% and 98.12%, respectively.\",\"PeriodicalId\":215521,\"journal\":{\"name\":\"2018 Computing in Cardiology Conference (CinC)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Computing in Cardiology Conference (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2018.222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Computing in Cardiology Conference (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2018.222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心音图(PCG)为门诊心脏健康评估提供了重要信息,是心脏评估的基本诊断测试。因此,在心音自动分析中,心电图中第一、第二心音的识别和定位是至关重要的一步。本研究提出了一种针对PCG记录的单个心动周期分割的解决方案。它提取了一组丰富的特征,通过定位PCG峰S1和S2,用于分割PCG记录中的每个心动周期。为了实现这一目标,从PCG记录的每一帧中选择并提取了66个丰富的判别特征,并对几个分类器进行了评估,以找出达到最高分割精度的分类器。最后,提出了一种后处理方法来降低分类噪声,从而提高分割性能。与文献中提出的早期方法相反,该方法在由48条877 PCG记录组成的最大数据集上进行了评估。该方法的f1评分为93.45%,灵敏度和特异性分别为94.23%和98.16%。并在Pascal基准数据集上进行了测试,灵敏度和特异性分别达到96.42%和98.12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature-Based Cardiac Cycle Segmentation in Phonocardiogram Recordings
Phonocardiogram (PCG) conveys crucial information for cardiac health evaluation in ambulatory care and is an essential diagnostic test for heart assessment. Thus, identification and positioning of the first and second heart sound within PCG is a vital step in automatic heart sound analysis. This study proposes a solution for individual cardiac cycle segmentation of PCG recordings. It extracts a rich set of features that are used for the segmentation of each cardiac cycle in a PCG recording by localizing the PCG peaks, S1 and S2. To accomplish this objective, a rich set of 66 discriminative features are selected and extracted from each frame in a PCG recording and several classifiers are evaluated to find out the one that achieves the highest segmentation accuracy. Finally, a post-processing method is proposed to reduce the classification noise and hence improve the segmentation performance Contrary to the earlier methods proposed in the literature, this method is evaluated on one of the largest datasets available consisting of 48 877s PCG recordings. The proposed method has achieved F1-score of 93.45%, and Sensitivity and Specificity values of 94.23% and 98.16% respectively. Moreover, it has been tested on the Pascal benchmark dataset, and has achieved Sensitivity and Specificity values of 96.42% and 98.12%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信