一维辛Kovacic算法

Thierry Combot, Camilo Sanabria
{"title":"一维辛Kovacic算法","authors":"Thierry Combot, Camilo Sanabria","doi":"10.1145/3208976.3209005","DOIUrl":null,"url":null,"abstract":"Let L be a 4th order linear differential operator with coefficients in K(z), with K a computable algebraically closed field. The operator L is called symplectic when up to rational gauge transformation, the fundamental matrix of solutions X satisfies Xt J X=J where J is the standard symplectic matrix. It is called projectively symplectic when it is projectively equivalent to a symplectic operator. We design an algorithm to test if L is projectively symplectic. Furthermore, based on Kovacic's algorithm, we design an algorithm that computes Liouvillian solutions of projectively symplectic operators of order 4. Moreover, using Klein's Theorem, algebraic solutions are given as pullbacks of standard hypergeometric equations.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Symplectic Kovacic's Algorithm in Dimension 4\",\"authors\":\"Thierry Combot, Camilo Sanabria\",\"doi\":\"10.1145/3208976.3209005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let L be a 4th order linear differential operator with coefficients in K(z), with K a computable algebraically closed field. The operator L is called symplectic when up to rational gauge transformation, the fundamental matrix of solutions X satisfies Xt J X=J where J is the standard symplectic matrix. It is called projectively symplectic when it is projectively equivalent to a symplectic operator. We design an algorithm to test if L is projectively symplectic. Furthermore, based on Kovacic's algorithm, we design an algorithm that computes Liouvillian solutions of projectively symplectic operators of order 4. Moreover, using Klein's Theorem, algebraic solutions are given as pullbacks of standard hypergeometric equations.\",\"PeriodicalId\":105762,\"journal\":{\"name\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3208976.3209005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3209005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设L为系数为K(z)的四阶线性微分算子,其中K为可计算代数闭域。当达到有理规范变换时,解的基本矩阵X满足Xt J X=J,其中J是标准辛矩阵,则称算子L为辛矩阵。当它与辛算子在射影上等价时,称为射影辛算子。我们设计了一个算法来检验L是否投影辛。进一步,在Kovacic算法的基础上,设计了一种计算4阶射影辛算子的Liouvillian解的算法。此外,利用克莱因定理给出了标准超几何方程的代数解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Symplectic Kovacic's Algorithm in Dimension 4
Let L be a 4th order linear differential operator with coefficients in K(z), with K a computable algebraically closed field. The operator L is called symplectic when up to rational gauge transformation, the fundamental matrix of solutions X satisfies Xt J X=J where J is the standard symplectic matrix. It is called projectively symplectic when it is projectively equivalent to a symplectic operator. We design an algorithm to test if L is projectively symplectic. Furthermore, based on Kovacic's algorithm, we design an algorithm that computes Liouvillian solutions of projectively symplectic operators of order 4. Moreover, using Klein's Theorem, algebraic solutions are given as pullbacks of standard hypergeometric equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信