告诉我你呼吸什么空气,我告诉你你在哪里

Hafsa El Hafyani, Mohammad Abboud, Jingwei Zuo, K. Zeitouni, Y. Taher
{"title":"告诉我你呼吸什么空气,我告诉你你在哪里","authors":"Hafsa El Hafyani, Mohammad Abboud, Jingwei Zuo, K. Zeitouni, Y. Taher","doi":"10.1145/3469830.3470914","DOIUrl":null,"url":null,"abstract":"Wide spread use of sensors and mobile devices along with the new paradigm of Mobile Crowd-Sensing (MCS), allows monitoring air pollution in urban areas. Several measurements are collected, such as Particulate Matters, Nitrogen dioxide, and others. Mining the context of MCS data in such domains is a key factor for identifying the individuals’ exposure to air pollution, but it is challenging due to the lack or the weakness of predictors. We have previously developed a multi-view learning approach which learns the context solely from the sensor measurements. In this demonstration, we propose a visualization tool (COMIC) showing the different recognized contexts using an improved version of our algorithm. We also demonstrate the change points detected by a multi-dimensional CPD model. We leverage real data from a MCS campaign, and compare different methods.","PeriodicalId":206910,"journal":{"name":"17th International Symposium on Spatial and Temporal Databases","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tell Me What Air You Breath, I Tell You Where You Are\",\"authors\":\"Hafsa El Hafyani, Mohammad Abboud, Jingwei Zuo, K. Zeitouni, Y. Taher\",\"doi\":\"10.1145/3469830.3470914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wide spread use of sensors and mobile devices along with the new paradigm of Mobile Crowd-Sensing (MCS), allows monitoring air pollution in urban areas. Several measurements are collected, such as Particulate Matters, Nitrogen dioxide, and others. Mining the context of MCS data in such domains is a key factor for identifying the individuals’ exposure to air pollution, but it is challenging due to the lack or the weakness of predictors. We have previously developed a multi-view learning approach which learns the context solely from the sensor measurements. In this demonstration, we propose a visualization tool (COMIC) showing the different recognized contexts using an improved version of our algorithm. We also demonstrate the change points detected by a multi-dimensional CPD model. We leverage real data from a MCS campaign, and compare different methods.\",\"PeriodicalId\":206910,\"journal\":{\"name\":\"17th International Symposium on Spatial and Temporal Databases\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th International Symposium on Spatial and Temporal Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469830.3470914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th International Symposium on Spatial and Temporal Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469830.3470914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

传感器和移动设备的广泛使用,以及移动人群传感(MCS)的新范例,使监测城市地区的空气污染成为可能。收集了一些测量数据,如颗粒物质、二氧化氮和其他。挖掘这些领域中MCS数据的上下文是确定个人暴露于空气污染的关键因素,但由于预测器的缺乏或薄弱,这是具有挑战性的。我们之前开发了一种多视图学习方法,该方法仅从传感器测量中学习上下文。在这个演示中,我们提出了一个可视化工具(COMIC),使用我们算法的改进版本来显示不同的识别上下文。我们还演示了由多维CPD模型检测到的变化点。我们利用来自MCS活动的真实数据,并比较不同的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tell Me What Air You Breath, I Tell You Where You Are
Wide spread use of sensors and mobile devices along with the new paradigm of Mobile Crowd-Sensing (MCS), allows monitoring air pollution in urban areas. Several measurements are collected, such as Particulate Matters, Nitrogen dioxide, and others. Mining the context of MCS data in such domains is a key factor for identifying the individuals’ exposure to air pollution, but it is challenging due to the lack or the weakness of predictors. We have previously developed a multi-view learning approach which learns the context solely from the sensor measurements. In this demonstration, we propose a visualization tool (COMIC) showing the different recognized contexts using an improved version of our algorithm. We also demonstrate the change points detected by a multi-dimensional CPD model. We leverage real data from a MCS campaign, and compare different methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信