你能比穷举搜索更快地解决最近字符串吗?

Amir Abboud, N. Fischer, Elazar Goldenberg, Ron Safier
{"title":"你能比穷举搜索更快地解决最近字符串吗?","authors":"Amir Abboud, N. Fischer, Elazar Goldenberg, Ron Safier","doi":"10.48550/arXiv.2305.16878","DOIUrl":null,"url":null,"abstract":"We study the fundamental problem of finding the best string to represent a given set, in the form of the Closest String problem: Given a set $X \\subseteq \\Sigma^d$ of $n$ strings, find the string $x^*$ minimizing the radius of the smallest Hamming ball around $x^*$ that encloses all the strings in $X$. In this paper, we investigate whether the Closest String problem admits algorithms that are faster than the trivial exhaustive search algorithm. We obtain the following results for the two natural versions of the problem: $\\bullet$ In the continuous Closest String problem, the goal is to find the solution string $x^*$ anywhere in $\\Sigma^d$. For binary strings, the exhaustive search algorithm runs in time $O(2^d poly(nd))$ and we prove that it cannot be improved to time $O(2^{(1-\\epsilon) d} poly(nd))$, for any $\\epsilon>0$, unless the Strong Exponential Time Hypothesis fails. $\\bullet$ In the discrete Closest String problem, $x^*$ is required to be in the input set $X$. While this problem is clearly in polynomial time, its fine-grained complexity has been pinpointed to be quadratic time $n^{2 \\pm o(1)}$ whenever the dimension is $\\omega(\\log n)<d<n^{o(1)}$. We complement this known hardness result with new algorithms, proving essentially that whenever $d$ falls out of this hard range, the discrete Closest String problem can be solved faster than exhaustive search. In the small-$d$ regime, our algorithm is based on a novel application of the inclusion-exclusion principle. Interestingly, all of our results apply (and some are even stronger) to the natural dual of the Closest String problem, called the Remotest String problem, where the task is to find a string maximizing the Hamming distance to all the strings in $X$.","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can You Solve Closest String Faster than Exhaustive Search?\",\"authors\":\"Amir Abboud, N. Fischer, Elazar Goldenberg, Ron Safier\",\"doi\":\"10.48550/arXiv.2305.16878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the fundamental problem of finding the best string to represent a given set, in the form of the Closest String problem: Given a set $X \\\\subseteq \\\\Sigma^d$ of $n$ strings, find the string $x^*$ minimizing the radius of the smallest Hamming ball around $x^*$ that encloses all the strings in $X$. In this paper, we investigate whether the Closest String problem admits algorithms that are faster than the trivial exhaustive search algorithm. We obtain the following results for the two natural versions of the problem: $\\\\bullet$ In the continuous Closest String problem, the goal is to find the solution string $x^*$ anywhere in $\\\\Sigma^d$. For binary strings, the exhaustive search algorithm runs in time $O(2^d poly(nd))$ and we prove that it cannot be improved to time $O(2^{(1-\\\\epsilon) d} poly(nd))$, for any $\\\\epsilon>0$, unless the Strong Exponential Time Hypothesis fails. $\\\\bullet$ In the discrete Closest String problem, $x^*$ is required to be in the input set $X$. While this problem is clearly in polynomial time, its fine-grained complexity has been pinpointed to be quadratic time $n^{2 \\\\pm o(1)}$ whenever the dimension is $\\\\omega(\\\\log n)<d<n^{o(1)}$. We complement this known hardness result with new algorithms, proving essentially that whenever $d$ falls out of this hard range, the discrete Closest String problem can be solved faster than exhaustive search. In the small-$d$ regime, our algorithm is based on a novel application of the inclusion-exclusion principle. Interestingly, all of our results apply (and some are even stronger) to the natural dual of the Closest String problem, called the Remotest String problem, where the task is to find a string maximizing the Hamming distance to all the strings in $X$.\",\"PeriodicalId\":201778,\"journal\":{\"name\":\"Embedded Systems and Applications\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Embedded Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2305.16878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.16878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们以最接近字符串问题的形式研究了寻找表示给定集合的最佳字符串的基本问题:给定集合 $X \subseteq \Sigma^d$ 的 $n$ 字符串,找到字符串 $x^*$ 使最小的汉明球的半径最小 $x^*$ 它包含了所有的字符串 $X$. 在本文中,我们研究了最近字符串问题是否允许比平凡穷举搜索算法更快的算法。对于问题的两种自然版本,我们得到如下结果: $\bullet$ 在连续的最接近字符串问题中,目标是找到解字符串 $x^*$ 在任何地方 $\Sigma^d$. 对于二进制字符串,穷举搜索算法在时间上运行 $O(2^d poly(nd))$ 我们证明了它不能随时间而改进 $O(2^{(1-\epsilon) d} poly(nd))$对于任何人 $\epsilon>0$,除非强指数时间假设不成立。 $\bullet$ 在离散最近弦问题中, $x^*$ 需要在输入集中吗 $X$. 虽然这个问题显然是多项式时间,但其细粒度复杂度已被确定为二次时间 $n^{2 \pm o(1)}$ 当维度是 $\omega(\log n)本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Can You Solve Closest String Faster than Exhaustive Search?
We study the fundamental problem of finding the best string to represent a given set, in the form of the Closest String problem: Given a set $X \subseteq \Sigma^d$ of $n$ strings, find the string $x^*$ minimizing the radius of the smallest Hamming ball around $x^*$ that encloses all the strings in $X$. In this paper, we investigate whether the Closest String problem admits algorithms that are faster than the trivial exhaustive search algorithm. We obtain the following results for the two natural versions of the problem: $\bullet$ In the continuous Closest String problem, the goal is to find the solution string $x^*$ anywhere in $\Sigma^d$. For binary strings, the exhaustive search algorithm runs in time $O(2^d poly(nd))$ and we prove that it cannot be improved to time $O(2^{(1-\epsilon) d} poly(nd))$, for any $\epsilon>0$, unless the Strong Exponential Time Hypothesis fails. $\bullet$ In the discrete Closest String problem, $x^*$ is required to be in the input set $X$. While this problem is clearly in polynomial time, its fine-grained complexity has been pinpointed to be quadratic time $n^{2 \pm o(1)}$ whenever the dimension is $\omega(\log n)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信