整合行星科学的机器学习:未来十年的展望

A. Azari, J. Biersteker, R. Dewey, Gary Doran, Emily J. Forsberg, C. Harris, H. Kerner, K. Skinner, Andy W. Smith, R. Amini, S. Cambioni, V. D. Poian, T. Garton, M. D. Himes, S. Millholland, S. Ruhunusiri
{"title":"整合行星科学的机器学习:未来十年的展望","authors":"A. Azari, J. Biersteker, R. Dewey, Gary Doran, Emily J. Forsberg, C. Harris, H. Kerner, K. Skinner, Andy W. Smith, R. Amini, S. Cambioni, V. D. Poian, T. Garton, M. D. Himes, S. Millholland, S. Ruhunusiri","doi":"10.3847/25c2cfeb.aa328727","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) methods can expand our ability to construct, and draw insight from large datasets. Despite the increasing volume of planetary observations, our field has seen few applications of ML in comparison to other sciences. To support these methods, we propose ten recommendations for bolstering a data-rich future in planetary science.","PeriodicalId":108352,"journal":{"name":"Bulletin of the AAS","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Integrating Machine Learning for Planetary Science: Perspectives for the Next Decade\",\"authors\":\"A. Azari, J. Biersteker, R. Dewey, Gary Doran, Emily J. Forsberg, C. Harris, H. Kerner, K. Skinner, Andy W. Smith, R. Amini, S. Cambioni, V. D. Poian, T. Garton, M. D. Himes, S. Millholland, S. Ruhunusiri\",\"doi\":\"10.3847/25c2cfeb.aa328727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning (ML) methods can expand our ability to construct, and draw insight from large datasets. Despite the increasing volume of planetary observations, our field has seen few applications of ML in comparison to other sciences. To support these methods, we propose ten recommendations for bolstering a data-rich future in planetary science.\",\"PeriodicalId\":108352,\"journal\":{\"name\":\"Bulletin of the AAS\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the AAS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/25c2cfeb.aa328727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the AAS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/25c2cfeb.aa328727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

机器学习(ML)方法可以扩展我们构建的能力,并从大型数据集中获得洞察力。尽管行星观测的数量越来越多,但与其他科学相比,我们的领域很少看到ML的应用。为了支持这些方法,我们提出了十项建议,以支持行星科学中数据丰富的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Machine Learning for Planetary Science: Perspectives for the Next Decade
Machine learning (ML) methods can expand our ability to construct, and draw insight from large datasets. Despite the increasing volume of planetary observations, our field has seen few applications of ML in comparison to other sciences. To support these methods, we propose ten recommendations for bolstering a data-rich future in planetary science.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信