A. Azari, J. Biersteker, R. Dewey, Gary Doran, Emily J. Forsberg, C. Harris, H. Kerner, K. Skinner, Andy W. Smith, R. Amini, S. Cambioni, V. D. Poian, T. Garton, M. D. Himes, S. Millholland, S. Ruhunusiri
{"title":"整合行星科学的机器学习:未来十年的展望","authors":"A. Azari, J. Biersteker, R. Dewey, Gary Doran, Emily J. Forsberg, C. Harris, H. Kerner, K. Skinner, Andy W. Smith, R. Amini, S. Cambioni, V. D. Poian, T. Garton, M. D. Himes, S. Millholland, S. Ruhunusiri","doi":"10.3847/25c2cfeb.aa328727","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) methods can expand our ability to construct, and draw insight from large datasets. Despite the increasing volume of planetary observations, our field has seen few applications of ML in comparison to other sciences. To support these methods, we propose ten recommendations for bolstering a data-rich future in planetary science.","PeriodicalId":108352,"journal":{"name":"Bulletin of the AAS","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Integrating Machine Learning for Planetary Science: Perspectives for the Next Decade\",\"authors\":\"A. Azari, J. Biersteker, R. Dewey, Gary Doran, Emily J. Forsberg, C. Harris, H. Kerner, K. Skinner, Andy W. Smith, R. Amini, S. Cambioni, V. D. Poian, T. Garton, M. D. Himes, S. Millholland, S. Ruhunusiri\",\"doi\":\"10.3847/25c2cfeb.aa328727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning (ML) methods can expand our ability to construct, and draw insight from large datasets. Despite the increasing volume of planetary observations, our field has seen few applications of ML in comparison to other sciences. To support these methods, we propose ten recommendations for bolstering a data-rich future in planetary science.\",\"PeriodicalId\":108352,\"journal\":{\"name\":\"Bulletin of the AAS\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the AAS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/25c2cfeb.aa328727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the AAS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/25c2cfeb.aa328727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrating Machine Learning for Planetary Science: Perspectives for the Next Decade
Machine learning (ML) methods can expand our ability to construct, and draw insight from large datasets. Despite the increasing volume of planetary observations, our field has seen few applications of ML in comparison to other sciences. To support these methods, we propose ten recommendations for bolstering a data-rich future in planetary science.