利用地理模型提高局部POI语音识别精度

Songjun Cao, Yike Zhang, Xiaobing Feng, Long Ma
{"title":"利用地理模型提高局部POI语音识别精度","authors":"Songjun Cao, Yike Zhang, Xiaobing Feng, Long Ma","doi":"10.1109/SLT48900.2021.9383538","DOIUrl":null,"url":null,"abstract":"Nowadays voice search for points of interest (POI) is becoming increasingly popular. However, speech recognition for local POI names still remains a challenge due to multi-dialect and long-tailed distribution of POI names. This paper improves speech recognition accuracy for local POI from two aspects. Firstly, a geographic acoustic model (Geo-AM) is proposed. The proposed Geo-AM deals with multi-dialect problem using dialect-specific input feature and dialect-specific top layers. Secondly, a group of geo-specific language models (Geo-LMs) are integrated into our speech recognition system to improve recognition accuracy of long-tailed and homophone POI names. During decoding, a specific Geo-LM is selected on-demand according to the user’s geographic location. Experiments show that the proposed Geo-AM achieves 6.5%~10.1% relative character error rate (CER) reduction on an accent test set and the proposed Geo-AM and Geo-LMs totally achieve over 18.7% relative CER reduction on a voice search task for Tencent Map.","PeriodicalId":243211,"journal":{"name":"2021 IEEE Spoken Language Technology Workshop (SLT)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Improving Speech Recognition Accuracy of Local POI Using Geographical Models\",\"authors\":\"Songjun Cao, Yike Zhang, Xiaobing Feng, Long Ma\",\"doi\":\"10.1109/SLT48900.2021.9383538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays voice search for points of interest (POI) is becoming increasingly popular. However, speech recognition for local POI names still remains a challenge due to multi-dialect and long-tailed distribution of POI names. This paper improves speech recognition accuracy for local POI from two aspects. Firstly, a geographic acoustic model (Geo-AM) is proposed. The proposed Geo-AM deals with multi-dialect problem using dialect-specific input feature and dialect-specific top layers. Secondly, a group of geo-specific language models (Geo-LMs) are integrated into our speech recognition system to improve recognition accuracy of long-tailed and homophone POI names. During decoding, a specific Geo-LM is selected on-demand according to the user’s geographic location. Experiments show that the proposed Geo-AM achieves 6.5%~10.1% relative character error rate (CER) reduction on an accent test set and the proposed Geo-AM and Geo-LMs totally achieve over 18.7% relative CER reduction on a voice search task for Tencent Map.\",\"PeriodicalId\":243211,\"journal\":{\"name\":\"2021 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT48900.2021.9383538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT48900.2021.9383538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

如今,语音搜索兴趣点(POI)变得越来越流行。然而,由于地名的多方言分布和长尾分布,本地地名的语音识别仍然是一个挑战。本文从两个方面提高了局部POI的语音识别精度。首先,提出地理声学模型(Geo-AM)。本文提出的Geo-AM使用特定方言的输入特征和特定方言的顶层来处理多方言问题。其次,将一组地理特定语言模型(Geo-LMs)集成到我们的语音识别系统中,以提高长尾和同音词的POI名称的识别精度。在解码过程中,根据用户的地理位置按需选择特定的Geo-LM。实验表明,本文提出的Geo-AM在口音测试集上的相对字符错误率(CER)降低了6.5%~10.1%,在腾讯地图语音搜索任务上,本文提出的Geo-AM和Geo-LMs的相对字符错误率降低了18.7%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Speech Recognition Accuracy of Local POI Using Geographical Models
Nowadays voice search for points of interest (POI) is becoming increasingly popular. However, speech recognition for local POI names still remains a challenge due to multi-dialect and long-tailed distribution of POI names. This paper improves speech recognition accuracy for local POI from two aspects. Firstly, a geographic acoustic model (Geo-AM) is proposed. The proposed Geo-AM deals with multi-dialect problem using dialect-specific input feature and dialect-specific top layers. Secondly, a group of geo-specific language models (Geo-LMs) are integrated into our speech recognition system to improve recognition accuracy of long-tailed and homophone POI names. During decoding, a specific Geo-LM is selected on-demand according to the user’s geographic location. Experiments show that the proposed Geo-AM achieves 6.5%~10.1% relative character error rate (CER) reduction on an accent test set and the proposed Geo-AM and Geo-LMs totally achieve over 18.7% relative CER reduction on a voice search task for Tencent Map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信