{"title":"通过高阶模态扰动的多因子轨迹迁移","authors":"S. Rice, J. Verboncoeur","doi":"10.1109/PLASMA.2016.7534360","DOIUrl":null,"url":null,"abstract":"Multipactor1,2 is a resonant phenomenon in which an electromagnetic field causes a free electron to impact a surface, resulting in the surface emitting one or more secondary electrons. If the surface geometry and electromagnetic fields are appropriately arranged, the secondary electrons can then be accelerated and again impact a surface in the bounding geometry. If the net number of secondary electrons participating in multipactor is non-decreasing, then the process can repeat indefinitely. This phenomenon is of considerable practical interest in the design and operation of radio frequency (RF) resonant structures, windows, and supporting structures.","PeriodicalId":424336,"journal":{"name":"2016 IEEE International Conference on Plasma Science (ICOPS)","volume":"1809 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Migration of multipactor trajectories via higher-order mode perturbations\",\"authors\":\"S. Rice, J. Verboncoeur\",\"doi\":\"10.1109/PLASMA.2016.7534360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multipactor1,2 is a resonant phenomenon in which an electromagnetic field causes a free electron to impact a surface, resulting in the surface emitting one or more secondary electrons. If the surface geometry and electromagnetic fields are appropriately arranged, the secondary electrons can then be accelerated and again impact a surface in the bounding geometry. If the net number of secondary electrons participating in multipactor is non-decreasing, then the process can repeat indefinitely. This phenomenon is of considerable practical interest in the design and operation of radio frequency (RF) resonant structures, windows, and supporting structures.\",\"PeriodicalId\":424336,\"journal\":{\"name\":\"2016 IEEE International Conference on Plasma Science (ICOPS)\",\"volume\":\"1809 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Plasma Science (ICOPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLASMA.2016.7534360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2016.7534360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Migration of multipactor trajectories via higher-order mode perturbations
Multipactor1,2 is a resonant phenomenon in which an electromagnetic field causes a free electron to impact a surface, resulting in the surface emitting one or more secondary electrons. If the surface geometry and electromagnetic fields are appropriately arranged, the secondary electrons can then be accelerated and again impact a surface in the bounding geometry. If the net number of secondary electrons participating in multipactor is non-decreasing, then the process can repeat indefinitely. This phenomenon is of considerable practical interest in the design and operation of radio frequency (RF) resonant structures, windows, and supporting structures.