应用拟牛顿优化方法设计电力系统负荷频率非线性预测控制器

Hesam Odin Komari Alaei, A. Yazdizadeh, A. Aliabadi
{"title":"应用拟牛顿优化方法设计电力系统负荷频率非线性预测控制器","authors":"Hesam Odin Komari Alaei, A. Yazdizadeh, A. Aliabadi","doi":"10.1109/CCA.2013.6662828","DOIUrl":null,"url":null,"abstract":"Power plants are highly nonlinear systems demand a powerful identification method for prediction of their future values or for control applications. In this paper, a generalized predictive controller (GPC) is developed by neural network for application of power plants load-frequency. In this case, the identified model is characterized by nonlinear model structure based on neural network. The control objectives are to maintain the frequency within a desired range in the presence of load disturbance and governor parameters uncertainty. Based on the nonlinear model predictive control (NMPC), a controller is designed, with particular emphasis on an efficient quasi-Newton algorithm. Quasi newton optimization method is considered for update the inverse Hessian matrix for minimization of NMPC criteria. The algorithm is compared with common PID controller for reference tracking and disturbances rejection.","PeriodicalId":379739,"journal":{"name":"2013 IEEE International Conference on Control Applications (CCA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Nonlinear predictive controller design for load frequency control in power system using quasi Newton optimization approach\",\"authors\":\"Hesam Odin Komari Alaei, A. Yazdizadeh, A. Aliabadi\",\"doi\":\"10.1109/CCA.2013.6662828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power plants are highly nonlinear systems demand a powerful identification method for prediction of their future values or for control applications. In this paper, a generalized predictive controller (GPC) is developed by neural network for application of power plants load-frequency. In this case, the identified model is characterized by nonlinear model structure based on neural network. The control objectives are to maintain the frequency within a desired range in the presence of load disturbance and governor parameters uncertainty. Based on the nonlinear model predictive control (NMPC), a controller is designed, with particular emphasis on an efficient quasi-Newton algorithm. Quasi newton optimization method is considered for update the inverse Hessian matrix for minimization of NMPC criteria. The algorithm is compared with common PID controller for reference tracking and disturbances rejection.\",\"PeriodicalId\":379739,\"journal\":{\"name\":\"2013 IEEE International Conference on Control Applications (CCA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Control Applications (CCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2013.6662828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2013.6662828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

电厂是高度非线性的系统,需要一种强大的识别方法来预测其未来值或用于控制应用。本文提出了一种基于神经网络的电厂负荷频率广义预测控制器(GPC)。在这种情况下,识别出的模型具有基于神经网络的非线性模型结构特征。控制目标是在存在负载扰动和调速器参数不确定性的情况下,使频率保持在期望范围内。基于非线性模型预测控制(NMPC),设计了一种控制器,重点研究了一种高效的准牛顿算法。为了使NMPC准则最小化,提出了准牛顿优化方法来更新逆Hessian矩阵。将该算法与普通PID控制器在参考点跟踪和抗干扰方面进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear predictive controller design for load frequency control in power system using quasi Newton optimization approach
Power plants are highly nonlinear systems demand a powerful identification method for prediction of their future values or for control applications. In this paper, a generalized predictive controller (GPC) is developed by neural network for application of power plants load-frequency. In this case, the identified model is characterized by nonlinear model structure based on neural network. The control objectives are to maintain the frequency within a desired range in the presence of load disturbance and governor parameters uncertainty. Based on the nonlinear model predictive control (NMPC), a controller is designed, with particular emphasis on an efficient quasi-Newton algorithm. Quasi newton optimization method is considered for update the inverse Hessian matrix for minimization of NMPC criteria. The algorithm is compared with common PID controller for reference tracking and disturbances rejection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信