多类数据特征选择新方法:迭代加权AUC (IWA)

P. Honzík, P. Kucera, O. Hyncica, Daniel Haupt
{"title":"多类数据特征选择新方法:迭代加权AUC (IWA)","authors":"P. Honzík, P. Kucera, O. Hyncica, Daniel Haupt","doi":"10.1109/IDAACS.2011.6072769","DOIUrl":null,"url":null,"abstract":"This paper deals with the new filter feature selection method Iteratively Weighted Area under Receiver Operating Characteristic (IWA). It is aimed for the multi-class problems with quantitative inputs. The experiments prove its superior quality in comparison to the equivalent methods.","PeriodicalId":106306,"journal":{"name":"Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"New feature selection method for multi-class data: Iteratively weighted AUC (IWA)\",\"authors\":\"P. Honzík, P. Kucera, O. Hyncica, Daniel Haupt\",\"doi\":\"10.1109/IDAACS.2011.6072769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the new filter feature selection method Iteratively Weighted Area under Receiver Operating Characteristic (IWA). It is aimed for the multi-class problems with quantitative inputs. The experiments prove its superior quality in comparison to the equivalent methods.\",\"PeriodicalId\":106306,\"journal\":{\"name\":\"Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDAACS.2011.6072769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAACS.2011.6072769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了一种新的滤波器特征选择方法——接收机工作特性下迭代加权面积法(IWA)。它针对的是具有定量输入的多类问题。实验证明了该方法优于等效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New feature selection method for multi-class data: Iteratively weighted AUC (IWA)
This paper deals with the new filter feature selection method Iteratively Weighted Area under Receiver Operating Characteristic (IWA). It is aimed for the multi-class problems with quantitative inputs. The experiments prove its superior quality in comparison to the equivalent methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信