Mei Liang, C. Trejo, Lavanya Muthu, Linh Ngo, André Luckow, A. Apon
{"title":"评估基于 R 的大数据分析框架","authors":"Mei Liang, C. Trejo, Lavanya Muthu, Linh Ngo, André Luckow, A. Apon","doi":"10.1109/CLUSTER.2015.86","DOIUrl":null,"url":null,"abstract":"We study the two approaches, rHadoop and H2O, to intergate R, a popular statistical programming environment, into the Hadoop Big Data ecosystem. Using these approaches and the vanilla implementation of MapReduce to implement the solution to an analytic question for the on-time airline performance data set, we evaluate the differences in runtime performance and elaborate on the causes of these differences based on rHadoop and H2O's design principles.","PeriodicalId":187042,"journal":{"name":"2015 IEEE International Conference on Cluster Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Evaluating R-Based Big Data Analytic Frameworks\",\"authors\":\"Mei Liang, C. Trejo, Lavanya Muthu, Linh Ngo, André Luckow, A. Apon\",\"doi\":\"10.1109/CLUSTER.2015.86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the two approaches, rHadoop and H2O, to intergate R, a popular statistical programming environment, into the Hadoop Big Data ecosystem. Using these approaches and the vanilla implementation of MapReduce to implement the solution to an analytic question for the on-time airline performance data set, we evaluate the differences in runtime performance and elaborate on the causes of these differences based on rHadoop and H2O's design principles.\",\"PeriodicalId\":187042,\"journal\":{\"name\":\"2015 IEEE International Conference on Cluster Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLUSTER.2015.86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTER.2015.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study the two approaches, rHadoop and H2O, to intergate R, a popular statistical programming environment, into the Hadoop Big Data ecosystem. Using these approaches and the vanilla implementation of MapReduce to implement the solution to an analytic question for the on-time airline performance data set, we evaluate the differences in runtime performance and elaborate on the causes of these differences based on rHadoop and H2O's design principles.