基于行为的网络访问控制系统异常点检测

M. Muhammad, A. Ayesh, Isabel Wagner
{"title":"基于行为的网络访问控制系统异常点检测","authors":"M. Muhammad, A. Ayesh, Isabel Wagner","doi":"10.1145/3341325.3342004","DOIUrl":null,"url":null,"abstract":"Network Access Control (NAC) systems manage the access of new devices into enterprise networks to prevent unauthorised devices from attacking network services. The main difficulty with this approach is that NAC cannot detect abnormal behaviour of devices connected to an enterprise network. These abnormal devices can be detected using outlier detection techniques. Existing outlier detection techniques focus on specific application domains such as fraud, event or system health monitoring. In this paper, we review attacks on Bring Your Own Device (BYOD) enterprise networks as well as existing clustering-based outlier detection algorithms along with their limitations. Importantly, existing techniques can detect outliers, but cannot detect where or which device is causing the abnormal behaviour. We develop a novel behaviour-based outlier detection technique which detects abnormal behaviour according to a device type profile. Based on data analysis with K-means clustering, we build device type profiles using Clustering-based Multivariate Gaussian Outlier Score (CMGOS) and filter out abnormal devices from the device type profile. The experimental results show the applicability of our approach as we can obtain a device type profile for five dell-netbooks, three iPads, two iPhone 3G, two iPhones 4G and Nokia Phones and detect outlying devices within the device type profile.","PeriodicalId":178126,"journal":{"name":"Proceedings of the 3rd International Conference on Future Networks and Distributed Systems","volume":"46 14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Behavior-Based Outlier Detection for Network Access Control Systems\",\"authors\":\"M. Muhammad, A. Ayesh, Isabel Wagner\",\"doi\":\"10.1145/3341325.3342004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network Access Control (NAC) systems manage the access of new devices into enterprise networks to prevent unauthorised devices from attacking network services. The main difficulty with this approach is that NAC cannot detect abnormal behaviour of devices connected to an enterprise network. These abnormal devices can be detected using outlier detection techniques. Existing outlier detection techniques focus on specific application domains such as fraud, event or system health monitoring. In this paper, we review attacks on Bring Your Own Device (BYOD) enterprise networks as well as existing clustering-based outlier detection algorithms along with their limitations. Importantly, existing techniques can detect outliers, but cannot detect where or which device is causing the abnormal behaviour. We develop a novel behaviour-based outlier detection technique which detects abnormal behaviour according to a device type profile. Based on data analysis with K-means clustering, we build device type profiles using Clustering-based Multivariate Gaussian Outlier Score (CMGOS) and filter out abnormal devices from the device type profile. The experimental results show the applicability of our approach as we can obtain a device type profile for five dell-netbooks, three iPads, two iPhone 3G, two iPhones 4G and Nokia Phones and detect outlying devices within the device type profile.\",\"PeriodicalId\":178126,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Future Networks and Distributed Systems\",\"volume\":\"46 14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Future Networks and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3341325.3342004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Future Networks and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341325.3342004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

NAC (Network Access Control)系统对企业网络中的新设备进行接入管理,防止未经授权的设备对网络业务进行攻击。这种方法的主要困难是NAC不能检测到连接到企业网络的设备的异常行为。这些异常设备可以使用离群检测技术进行检测。现有的异常值检测技术侧重于特定的应用领域,如欺诈、事件或系统健康监视。在本文中,我们回顾了对自带设备(BYOD)企业网络的攻击,以及现有的基于聚类的离群值检测算法及其局限性。重要的是,现有的技术可以检测到异常值,但不能检测到在哪里或哪个设备导致异常行为。我们开发了一种新的基于行为的异常检测技术,根据设备类型配置文件检测异常行为。基于K-means聚类的数据分析,我们使用基于聚类的多元高斯离群值(CMGOS)构建设备类型概况,并从设备类型概况中过滤掉异常设备。实验结果表明了我们方法的适用性,因为我们可以获得五台戴尔上网本、三台ipad、两台iPhone 3G、两台iPhone 4G和诺基亚手机的设备类型配置文件,并在设备类型配置文件中检测外围设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behavior-Based Outlier Detection for Network Access Control Systems
Network Access Control (NAC) systems manage the access of new devices into enterprise networks to prevent unauthorised devices from attacking network services. The main difficulty with this approach is that NAC cannot detect abnormal behaviour of devices connected to an enterprise network. These abnormal devices can be detected using outlier detection techniques. Existing outlier detection techniques focus on specific application domains such as fraud, event or system health monitoring. In this paper, we review attacks on Bring Your Own Device (BYOD) enterprise networks as well as existing clustering-based outlier detection algorithms along with their limitations. Importantly, existing techniques can detect outliers, but cannot detect where or which device is causing the abnormal behaviour. We develop a novel behaviour-based outlier detection technique which detects abnormal behaviour according to a device type profile. Based on data analysis with K-means clustering, we build device type profiles using Clustering-based Multivariate Gaussian Outlier Score (CMGOS) and filter out abnormal devices from the device type profile. The experimental results show the applicability of our approach as we can obtain a device type profile for five dell-netbooks, three iPads, two iPhone 3G, two iPhones 4G and Nokia Phones and detect outlying devices within the device type profile.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信