通过个性化基于内容的自动注释在youtube上标记建议

Dominik Henter, Damian Borth, A. Ulges
{"title":"通过个性化基于内容的自动注释在youtube上标记建议","authors":"Dominik Henter, Damian Borth, A. Ulges","doi":"10.1145/2390803.2390819","DOIUrl":null,"url":null,"abstract":"We address the challenge of tag recommendation for web video clips on portals such as YouTube. In a quantitative study on 23,000 YouTube videos, we first evaluate different tag suggestion strategies employing user profiling (using tags from the user's upload history) as well as social signals (the channels a user subscribed to) and content analysis. Our results confirm earlier findings that --~at least when employing users' original tags as ground truth~-- a history-based approach outperforms other techniques. Second, we suggest a novel approach that integrates the strengths of history-based tag suggestion with a content matching crowd-sourced from a large repository of user generated videos. Our approach performs a visual similarity matching and merges neighbors found in a large-scale reference dataset of user-tagged content with others from the user's personal history. This way, signals gained by crowd-sourcing can help to disambiguate tag suggestions, for example in cases of heterogeneous user interest profiles or non-existing user history. Our quantitative experiments indicate that such a personalized tag transfer gives strong improvements over a standard content matching, and moderate ones over a content-free history-based ranking.","PeriodicalId":429491,"journal":{"name":"CrowdMM '12","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tag suggestion on youtube by personalizing content-based auto-annotation\",\"authors\":\"Dominik Henter, Damian Borth, A. Ulges\",\"doi\":\"10.1145/2390803.2390819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the challenge of tag recommendation for web video clips on portals such as YouTube. In a quantitative study on 23,000 YouTube videos, we first evaluate different tag suggestion strategies employing user profiling (using tags from the user's upload history) as well as social signals (the channels a user subscribed to) and content analysis. Our results confirm earlier findings that --~at least when employing users' original tags as ground truth~-- a history-based approach outperforms other techniques. Second, we suggest a novel approach that integrates the strengths of history-based tag suggestion with a content matching crowd-sourced from a large repository of user generated videos. Our approach performs a visual similarity matching and merges neighbors found in a large-scale reference dataset of user-tagged content with others from the user's personal history. This way, signals gained by crowd-sourcing can help to disambiguate tag suggestions, for example in cases of heterogeneous user interest profiles or non-existing user history. Our quantitative experiments indicate that such a personalized tag transfer gives strong improvements over a standard content matching, and moderate ones over a content-free history-based ranking.\",\"PeriodicalId\":429491,\"journal\":{\"name\":\"CrowdMM '12\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CrowdMM '12\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2390803.2390819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrowdMM '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2390803.2390819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们解决了诸如YouTube等门户网站视频剪辑的标签推荐问题。在对23,000个YouTube视频的定量研究中,我们首先评估了不同的标签建议策略,采用用户分析(使用用户上传历史中的标签)以及社会信号(用户订阅的频道)和内容分析。我们的结果证实了早期的发现——至少当使用用户的原始标签作为基础事实时——基于历史的方法优于其他技术。其次,我们提出了一种新颖的方法,该方法将基于历史的标签建议的优势与来自用户生成视频的大型存储库的内容匹配众包相结合。我们的方法执行视觉相似性匹配,并将在用户标记内容的大规模参考数据集中发现的邻居与用户个人历史中的其他邻居合并。通过这种方式,通过众包获得的信号可以帮助消除标签建议的歧义,例如在异构用户兴趣概况或不存在的用户历史的情况下。我们的定量实验表明,这种个性化的标签转移比标准的内容匹配有很大的改进,比基于无内容历史的排名有适度的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tag suggestion on youtube by personalizing content-based auto-annotation
We address the challenge of tag recommendation for web video clips on portals such as YouTube. In a quantitative study on 23,000 YouTube videos, we first evaluate different tag suggestion strategies employing user profiling (using tags from the user's upload history) as well as social signals (the channels a user subscribed to) and content analysis. Our results confirm earlier findings that --~at least when employing users' original tags as ground truth~-- a history-based approach outperforms other techniques. Second, we suggest a novel approach that integrates the strengths of history-based tag suggestion with a content matching crowd-sourced from a large repository of user generated videos. Our approach performs a visual similarity matching and merges neighbors found in a large-scale reference dataset of user-tagged content with others from the user's personal history. This way, signals gained by crowd-sourcing can help to disambiguate tag suggestions, for example in cases of heterogeneous user interest profiles or non-existing user history. Our quantitative experiments indicate that such a personalized tag transfer gives strong improvements over a standard content matching, and moderate ones over a content-free history-based ranking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信