基于阶段型模型的停留时间数据趋势分析

T. Le, C. Kwoh, K. Lee, Eng Soon Teo
{"title":"基于阶段型模型的停留时间数据趋势分析","authors":"T. Le, C. Kwoh, K. Lee, Eng Soon Teo","doi":"10.4018/jkdb.2011070103","DOIUrl":null,"url":null,"abstract":"The populations in many developed countries throughout the world are aging rapidly and the number of geriatric patients is expected to rise steeply in those countries. This will exert greater pressures on the management of hospital resources as a result. Hospital length of stay (LOS) is an important indicator of hospital activity and management because of its direct relation to resource consumption. Planning of hospital resources according to identified trends of LOS is, thus, an effective way to meet such future needs. In this paper, the authors propose a method to analyze the temporal trends of LOS based on the Coxian phase-type distributions, a special type of continuous-time Markov process. By fitting and regressing the probabilities of discharge from each phase of the distribution on time, the authors have found a growing trend in the proportion of long-staying patients in their sample of stroke patients from a general hospital in Singapore. The authors compare the yearly, quarterly and monthly trends over the same period to see the common pattern. The datasets were also robustified by bootstrapping to aid the analysis.","PeriodicalId":160270,"journal":{"name":"Int. J. Knowl. Discov. Bioinform.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Trend Analysis of Length of Stay Data via Phase-Type Models\",\"authors\":\"T. Le, C. Kwoh, K. Lee, Eng Soon Teo\",\"doi\":\"10.4018/jkdb.2011070103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The populations in many developed countries throughout the world are aging rapidly and the number of geriatric patients is expected to rise steeply in those countries. This will exert greater pressures on the management of hospital resources as a result. Hospital length of stay (LOS) is an important indicator of hospital activity and management because of its direct relation to resource consumption. Planning of hospital resources according to identified trends of LOS is, thus, an effective way to meet such future needs. In this paper, the authors propose a method to analyze the temporal trends of LOS based on the Coxian phase-type distributions, a special type of continuous-time Markov process. By fitting and regressing the probabilities of discharge from each phase of the distribution on time, the authors have found a growing trend in the proportion of long-staying patients in their sample of stroke patients from a general hospital in Singapore. The authors compare the yearly, quarterly and monthly trends over the same period to see the common pattern. The datasets were also robustified by bootstrapping to aid the analysis.\",\"PeriodicalId\":160270,\"journal\":{\"name\":\"Int. J. Knowl. Discov. Bioinform.\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Discov. Bioinform.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jkdb.2011070103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Discov. Bioinform.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jkdb.2011070103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

世界上许多发达国家的人口正在迅速老龄化,预计这些国家的老年患者人数将急剧增加。这将对医院资源的管理造成更大的压力。住院时间(LOS)与医院资源消耗有直接关系,是医院活动和管理的重要指标。因此,根据已确定的LOS趋势对医院资源进行规划是满足这种未来需求的有效途径。本文提出了一种基于Coxian相型分布(一种特殊类型的连续时间马尔可夫过程)的LOS时间趋势分析方法。通过拟合和回归每个阶段准时出院的概率,作者发现长期住院的患者在新加坡一家综合医院的中风患者样本中所占比例呈增长趋势。作者比较了同一时期的年度、季度和月度趋势,以发现共同的模式。数据集还通过自举进行鲁棒化,以帮助分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trend Analysis of Length of Stay Data via Phase-Type Models
The populations in many developed countries throughout the world are aging rapidly and the number of geriatric patients is expected to rise steeply in those countries. This will exert greater pressures on the management of hospital resources as a result. Hospital length of stay (LOS) is an important indicator of hospital activity and management because of its direct relation to resource consumption. Planning of hospital resources according to identified trends of LOS is, thus, an effective way to meet such future needs. In this paper, the authors propose a method to analyze the temporal trends of LOS based on the Coxian phase-type distributions, a special type of continuous-time Markov process. By fitting and regressing the probabilities of discharge from each phase of the distribution on time, the authors have found a growing trend in the proportion of long-staying patients in their sample of stroke patients from a general hospital in Singapore. The authors compare the yearly, quarterly and monthly trends over the same period to see the common pattern. The datasets were also robustified by bootstrapping to aid the analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信