在自动语音识别环境下,书面文本和语音文本训练的语言模型的比较

Sebastian Dziadzio, A. Nabożny, Aleksander Smywiński-Pohl, B. Ziółko
{"title":"在自动语音识别环境下,书面文本和语音文本训练的语言模型的比较","authors":"Sebastian Dziadzio, A. Nabożny, Aleksander Smywiński-Pohl, B. Ziółko","doi":"10.15439/2015F386","DOIUrl":null,"url":null,"abstract":"We investigate whether language models used in automatic speech recognition (ASR) should be trained on speech transcripts rather than on written texts. By calculating log-likelihood statistic for part-of-speech (POS) n-grams, we show that there are significant differences between written texts and speech transcripts. We also test the performance of language models trained on speech transcripts and written texts in ASR and show that using the former results in greater word error reduction rates (WERR), even if the model is trained on much smaller corpora. For our experiments we used the manually labeled one million subcorpus of the National Corpus of Polish and an HTK acoustic model.","PeriodicalId":276884,"journal":{"name":"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparison of language models trained on written texts and speech transcripts in the context of automatic speech recognition\",\"authors\":\"Sebastian Dziadzio, A. Nabożny, Aleksander Smywiński-Pohl, B. Ziółko\",\"doi\":\"10.15439/2015F386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate whether language models used in automatic speech recognition (ASR) should be trained on speech transcripts rather than on written texts. By calculating log-likelihood statistic for part-of-speech (POS) n-grams, we show that there are significant differences between written texts and speech transcripts. We also test the performance of language models trained on speech transcripts and written texts in ASR and show that using the former results in greater word error reduction rates (WERR), even if the model is trained on much smaller corpora. For our experiments we used the manually labeled one million subcorpus of the National Corpus of Polish and an HTK acoustic model.\",\"PeriodicalId\":276884,\"journal\":{\"name\":\"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15439/2015F386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15439/2015F386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们研究了自动语音识别(ASR)中使用的语言模型是否应该根据语音文本而不是书面文本进行训练。通过计算词性n图的对数似然统计,我们发现书面文本和语音文本之间存在显著差异。我们还测试了在ASR中对语音抄本和书面文本进行训练的语言模型的性能,结果表明,使用前者可以获得更高的单词错误率(WERR),即使该模型是在更小的语料库上训练的。在我们的实验中,我们使用了手工标记的波兰语国家语料库的100万个子语料库和HTK声学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of language models trained on written texts and speech transcripts in the context of automatic speech recognition
We investigate whether language models used in automatic speech recognition (ASR) should be trained on speech transcripts rather than on written texts. By calculating log-likelihood statistic for part-of-speech (POS) n-grams, we show that there are significant differences between written texts and speech transcripts. We also test the performance of language models trained on speech transcripts and written texts in ASR and show that using the former results in greater word error reduction rates (WERR), even if the model is trained on much smaller corpora. For our experiments we used the manually labeled one million subcorpus of the National Corpus of Polish and an HTK acoustic model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信