金属纤维层压板的动态力学性能

Jianjun Liu, B. Liaw, Manish Pamwar
{"title":"金属纤维层压板的动态力学性能","authors":"Jianjun Liu, B. Liaw, Manish Pamwar","doi":"10.1115/imece2001/amd-25424","DOIUrl":null,"url":null,"abstract":"\n Fiber-metal laminated cantilever beams, made of glass-fiber reinforced GLARE and aramid-fiber reinforced ARALL laminates interlaced with aluminum layers, were first excited by a shaker at various frequencies surrounding resonances. Dynamic Young’s moduli and damping ratios were then evaluated using both free-vibration (resonance) and forced-vibration (non-resonance) schemes. Results from both schemes are in good agreement. Compared to aluminum alloys, the dynamic Young’s moduli of fiber-metal laminates are relatively lower. For all types of fiber-metal laminates tested in this study, their values are almost constant within an excitation frequency range up to 5,000 Hz whereas the damping ratios oscillate within a narrow range of 0 to 0.02. The obtained dynamic moduli are in excellent agreement with their static counterparts. Better results were obtained when using a strain gage near the clamped end, as compared to a piezoelectric accelerometer at the tip.","PeriodicalId":431388,"journal":{"name":"Crashworthiness of Composites and Lightweight Structures","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamic Mechanical Properties of Fiber-Metal Laminates\",\"authors\":\"Jianjun Liu, B. Liaw, Manish Pamwar\",\"doi\":\"10.1115/imece2001/amd-25424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Fiber-metal laminated cantilever beams, made of glass-fiber reinforced GLARE and aramid-fiber reinforced ARALL laminates interlaced with aluminum layers, were first excited by a shaker at various frequencies surrounding resonances. Dynamic Young’s moduli and damping ratios were then evaluated using both free-vibration (resonance) and forced-vibration (non-resonance) schemes. Results from both schemes are in good agreement. Compared to aluminum alloys, the dynamic Young’s moduli of fiber-metal laminates are relatively lower. For all types of fiber-metal laminates tested in this study, their values are almost constant within an excitation frequency range up to 5,000 Hz whereas the damping ratios oscillate within a narrow range of 0 to 0.02. The obtained dynamic moduli are in excellent agreement with their static counterparts. Better results were obtained when using a strain gage near the clamped end, as compared to a piezoelectric accelerometer at the tip.\",\"PeriodicalId\":431388,\"journal\":{\"name\":\"Crashworthiness of Composites and Lightweight Structures\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crashworthiness of Composites and Lightweight Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2001/amd-25424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crashworthiness of Composites and Lightweight Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/amd-25424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由玻璃纤维增强的眩光和芳纶纤维增强的ARALL层压板与铝层交织而成的纤维-金属层压悬臂梁,首先由激振器在周围共振的不同频率下激发。然后使用自由振动(共振)和强制振动(非共振)方案评估动态杨氏模量和阻尼比。两种方案的计算结果吻合较好。与铝合金相比,金属纤维层压板的动态杨氏模量相对较低。对于本研究中测试的所有类型的金属纤维层压板,其值在高达5,000 Hz的激励频率范围内几乎是恒定的,而阻尼比在0到0.02的狭窄范围内振荡。得到的动态模量与静态模量非常吻合。与在尖端使用压电加速度计相比,在夹紧端附近使用应变计获得了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Mechanical Properties of Fiber-Metal Laminates
Fiber-metal laminated cantilever beams, made of glass-fiber reinforced GLARE and aramid-fiber reinforced ARALL laminates interlaced with aluminum layers, were first excited by a shaker at various frequencies surrounding resonances. Dynamic Young’s moduli and damping ratios were then evaluated using both free-vibration (resonance) and forced-vibration (non-resonance) schemes. Results from both schemes are in good agreement. Compared to aluminum alloys, the dynamic Young’s moduli of fiber-metal laminates are relatively lower. For all types of fiber-metal laminates tested in this study, their values are almost constant within an excitation frequency range up to 5,000 Hz whereas the damping ratios oscillate within a narrow range of 0 to 0.02. The obtained dynamic moduli are in excellent agreement with their static counterparts. Better results were obtained when using a strain gage near the clamped end, as compared to a piezoelectric accelerometer at the tip.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信