海报:在多模态传感数据中交叉标记和学习未知活动

Lan Zhang, Daren Zheng, Zhengtao Wu, Mengjing Liu, Mu Yuan, Feng Han, Xiangyang Li
{"title":"海报:在多模态传感数据中交叉标记和学习未知活动","authors":"Lan Zhang, Daren Zheng, Zhengtao Wu, Mengjing Liu, Mu Yuan, Feng Han, Xiangyang Li","doi":"10.1145/3300061.3343407","DOIUrl":null,"url":null,"abstract":"One of the major challenges for fully enjoying the power of machine learning is the need for the high-quality labelled data. To tap-in the gold-mine of data generated by IoT devices with unprecedented volume and value, we discover and leverage the hidden connections among the multimodal data collected by various sensing devices. Different modal data can complete and learn from each other, but it is challenging to fuse multimodal data without knowing their perception (and thus the correct labels). In this work, we propose MultiSense, a paradigm for automatically mining potential perception, cross-labelling each modal data, and then improving the learning models over the set of multimodal data. We design innovative solutions for segmenting, aligning, and fusing multimodal data from different sensors. We implement our framework and conduct comprehensive evaluations on a rich set of data. Our results demonstrate that MultiSense significantly improves the data usability and the power of the learning models.","PeriodicalId":223523,"journal":{"name":"The 25th Annual International Conference on Mobile Computing and Networking","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poster: Cross Labelling and Learning Unknown Activities Among Multimodal Sensing Data\",\"authors\":\"Lan Zhang, Daren Zheng, Zhengtao Wu, Mengjing Liu, Mu Yuan, Feng Han, Xiangyang Li\",\"doi\":\"10.1145/3300061.3343407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the major challenges for fully enjoying the power of machine learning is the need for the high-quality labelled data. To tap-in the gold-mine of data generated by IoT devices with unprecedented volume and value, we discover and leverage the hidden connections among the multimodal data collected by various sensing devices. Different modal data can complete and learn from each other, but it is challenging to fuse multimodal data without knowing their perception (and thus the correct labels). In this work, we propose MultiSense, a paradigm for automatically mining potential perception, cross-labelling each modal data, and then improving the learning models over the set of multimodal data. We design innovative solutions for segmenting, aligning, and fusing multimodal data from different sensors. We implement our framework and conduct comprehensive evaluations on a rich set of data. Our results demonstrate that MultiSense significantly improves the data usability and the power of the learning models.\",\"PeriodicalId\":223523,\"journal\":{\"name\":\"The 25th Annual International Conference on Mobile Computing and Networking\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 25th Annual International Conference on Mobile Computing and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3300061.3343407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 25th Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3300061.3343407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

充分享受机器学习力量的主要挑战之一是对高质量标记数据的需求。为了以前所未有的数量和价值挖掘物联网设备产生的数据金矿,我们发现并利用了各种传感设备收集的多模态数据之间的隐藏联系。不同的模态数据可以相互完成和学习,但是在不知道它们的感知(因此是正确的标签)的情况下融合多模态数据是具有挑战性的。在这项工作中,我们提出了MultiSense,这是一个自动挖掘潜在感知的范例,交叉标记每个模态数据,然后改进多模态数据集的学习模型。我们为来自不同传感器的多模态数据的分割、对齐和融合设计了创新的解决方案。我们实施我们的框架,并对一组丰富的数据进行全面评估。我们的研究结果表明,MultiSense显著提高了数据可用性和学习模型的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poster: Cross Labelling and Learning Unknown Activities Among Multimodal Sensing Data
One of the major challenges for fully enjoying the power of machine learning is the need for the high-quality labelled data. To tap-in the gold-mine of data generated by IoT devices with unprecedented volume and value, we discover and leverage the hidden connections among the multimodal data collected by various sensing devices. Different modal data can complete and learn from each other, but it is challenging to fuse multimodal data without knowing their perception (and thus the correct labels). In this work, we propose MultiSense, a paradigm for automatically mining potential perception, cross-labelling each modal data, and then improving the learning models over the set of multimodal data. We design innovative solutions for segmenting, aligning, and fusing multimodal data from different sensors. We implement our framework and conduct comprehensive evaluations on a rich set of data. Our results demonstrate that MultiSense significantly improves the data usability and the power of the learning models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信