利用进化抽样挖掘不平衡数据

D. J. Drown, T. Khoshgoftaar, R. Narayanan
{"title":"利用进化抽样挖掘不平衡数据","authors":"D. J. Drown, T. Khoshgoftaar, R. Narayanan","doi":"10.1109/ICMLA.2007.73","DOIUrl":null,"url":null,"abstract":"Class imbalance tends to cause inferior performance in data mining learners. Evolutionary sampling is a technique which seeks to counter this problem by using genetic algorithms to evolve a reduced sample of a complete dataset to train a classification model. Evolutionary sampling works to remove noisy and duplicate instances so that the sampled training data will produce a superior classifier. We propose this novel technique as a method to handle severe class imbalance in data mining. This paper presents our research into the the use of evolutionary sampling with C4.5 decision trees and compares the technique's performance with random undersamp ling.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Using evolutionary sampling to mine imbalanced data\",\"authors\":\"D. J. Drown, T. Khoshgoftaar, R. Narayanan\",\"doi\":\"10.1109/ICMLA.2007.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Class imbalance tends to cause inferior performance in data mining learners. Evolutionary sampling is a technique which seeks to counter this problem by using genetic algorithms to evolve a reduced sample of a complete dataset to train a classification model. Evolutionary sampling works to remove noisy and duplicate instances so that the sampled training data will produce a superior classifier. We propose this novel technique as a method to handle severe class imbalance in data mining. This paper presents our research into the the use of evolutionary sampling with C4.5 decision trees and compares the technique's performance with random undersamp ling.\",\"PeriodicalId\":448863,\"journal\":{\"name\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2007.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

类不平衡往往会导致数据挖掘学习器的性能下降。进化采样是一种通过使用遗传算法来进化一个完整数据集的减少样本来训练分类模型的技术。进化采样的工作原理是去除噪声和重复的实例,这样采样的训练数据将产生一个更好的分类器。我们提出了一种新的方法来处理数据挖掘中严重的类不平衡。本文介绍了基于C4.5决策树的进化采样技术的研究,并将其与随机欠采样技术的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using evolutionary sampling to mine imbalanced data
Class imbalance tends to cause inferior performance in data mining learners. Evolutionary sampling is a technique which seeks to counter this problem by using genetic algorithms to evolve a reduced sample of a complete dataset to train a classification model. Evolutionary sampling works to remove noisy and duplicate instances so that the sampled training data will produce a superior classifier. We propose this novel technique as a method to handle severe class imbalance in data mining. This paper presents our research into the the use of evolutionary sampling with C4.5 decision trees and compares the technique's performance with random undersamp ling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信