双峰朴素集合论

J. Wigglesworth
{"title":"双峰朴素集合论","authors":"J. Wigglesworth","doi":"10.26686/ajl.v15i2.4859","DOIUrl":null,"url":null,"abstract":"This paper describes a modal conception of sets, according to which sets are 'potential' with respect to their members.  A modal theory is developed, which invokes a naive comprehension axiom schema, modified by adding `forward looking' and `backward looking' modal operators.  We show that this `bi-modal' naive set theory can prove modalized interpretations of several ZFC axioms, including the axiom of infinity.  We also show that the theory is consistent by providing an S5 Kripke model.  The paper concludes with some discussion of the nature of the modalities involved, drawing comparisons with noneism, the view that there are some non-existent objects.","PeriodicalId":367849,"journal":{"name":"The Australasian Journal of Logic","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bi-Modal Naive Set Theory\",\"authors\":\"J. Wigglesworth\",\"doi\":\"10.26686/ajl.v15i2.4859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a modal conception of sets, according to which sets are 'potential' with respect to their members.  A modal theory is developed, which invokes a naive comprehension axiom schema, modified by adding `forward looking' and `backward looking' modal operators.  We show that this `bi-modal' naive set theory can prove modalized interpretations of several ZFC axioms, including the axiom of infinity.  We also show that the theory is consistent by providing an S5 Kripke model.  The paper concludes with some discussion of the nature of the modalities involved, drawing comparisons with noneism, the view that there are some non-existent objects.\",\"PeriodicalId\":367849,\"journal\":{\"name\":\"The Australasian Journal of Logic\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Australasian Journal of Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26686/ajl.v15i2.4859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Australasian Journal of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26686/ajl.v15i2.4859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了集合的模态概念,根据这个概念,集合相对于它们的成员是“势”的。提出了一个模态理论,它调用了一个朴素的理解公理模式,通过添加“前向”和“后向”模态操作符进行了修改。我们证明了这种“双峰”朴素集合理论可以证明几个ZFC公理的模态解释,包括无穷公理。我们还通过提供一个S5 Kripke模型来证明该理论是一致的。本文最后对所涉及的模态的性质进行了一些讨论,并与noneism进行了比较,noneism认为存在一些不存在的对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bi-Modal Naive Set Theory
This paper describes a modal conception of sets, according to which sets are 'potential' with respect to their members.  A modal theory is developed, which invokes a naive comprehension axiom schema, modified by adding `forward looking' and `backward looking' modal operators.  We show that this `bi-modal' naive set theory can prove modalized interpretations of several ZFC axioms, including the axiom of infinity.  We also show that the theory is consistent by providing an S5 Kripke model.  The paper concludes with some discussion of the nature of the modalities involved, drawing comparisons with noneism, the view that there are some non-existent objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信