一种新的模糊脑肿瘤分割方法

N. Castillo, E. Montseny, P. Sobrevilla
{"title":"一种新的模糊脑肿瘤分割方法","authors":"N. Castillo, E. Montseny, P. Sobrevilla","doi":"10.1109/FUZZY.2010.5584178","DOIUrl":null,"url":null,"abstract":"In this paper we present a fully automatic and unsupervised brain tumor segmentation method which considers human knowledge. The expert knowledge and the features derived from the MR images are coupled to define heuristic rules aimed to the design of the fuzzy approach. To assess the unsupervised and fully automatic segmentation, intensity-based objective measures are defined, and a new method for obtaining membership functions to suit the MRI data is introduced. The proposed approach is quantitatively comparable to the most accurate existing methods, even though the segmentation is done in 2D.","PeriodicalId":377799,"journal":{"name":"International Conference on Fuzzy Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"A new fuzzy approach to brain tumor segmentation\",\"authors\":\"N. Castillo, E. Montseny, P. Sobrevilla\",\"doi\":\"10.1109/FUZZY.2010.5584178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a fully automatic and unsupervised brain tumor segmentation method which considers human knowledge. The expert knowledge and the features derived from the MR images are coupled to define heuristic rules aimed to the design of the fuzzy approach. To assess the unsupervised and fully automatic segmentation, intensity-based objective measures are defined, and a new method for obtaining membership functions to suit the MRI data is introduced. The proposed approach is quantitatively comparable to the most accurate existing methods, even though the segmentation is done in 2D.\",\"PeriodicalId\":377799,\"journal\":{\"name\":\"International Conference on Fuzzy Systems\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2010.5584178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2010.5584178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

本文提出了一种考虑人类知识的全自动无监督脑肿瘤分割方法。将专家知识和从磁共振图像中获得的特征相结合,定义启发式规则,旨在设计模糊方法。为了评估无监督和全自动分割,定义了基于强度的客观度量,并引入了一种新的方法来获取适合MRI数据的隶属函数。所提出的方法在数量上与最精确的现有方法相当,即使分割是在2D中完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new fuzzy approach to brain tumor segmentation
In this paper we present a fully automatic and unsupervised brain tumor segmentation method which considers human knowledge. The expert knowledge and the features derived from the MR images are coupled to define heuristic rules aimed to the design of the fuzzy approach. To assess the unsupervised and fully automatic segmentation, intensity-based objective measures are defined, and a new method for obtaining membership functions to suit the MRI data is introduced. The proposed approach is quantitatively comparable to the most accurate existing methods, even though the segmentation is done in 2D.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信