基于倒谱特征和离散隐马尔可夫模型的说话人识别

Sangeeta Biswas, Shamim Ahmadt, Md Khademul, Islam Molladt
{"title":"基于倒谱特征和离散隐马尔可夫模型的说话人识别","authors":"Sangeeta Biswas, Shamim Ahmadt, Md Khademul, Islam Molladt","doi":"10.1109/ICICT.2007.375398","DOIUrl":null,"url":null,"abstract":"This paper presents a speaker identification system using cepstral based speech features with discrete hidden Markov model (DHMM). The speaker features represented by the speech signal are potentially characterized by the cepstral coefficients. The commonly used cepstral based features; mel-frequency cepstral coefficient (MFCC), linear predictive cepstral coefficient (LPCC) and real cepstral coefficient (RCC) are employed with DHMM in the speaker identification system. The performances of the proposed method are compared with respect to each of the three feature spaces. The experimental results show that the identification accuracy with MFCC is superior to both of LPCC and RCC.","PeriodicalId":206443,"journal":{"name":"2007 International Conference on Information and Communication Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Speaker Identification Using Cepstral Based Features and Discrete Hidden Markov Model\",\"authors\":\"Sangeeta Biswas, Shamim Ahmadt, Md Khademul, Islam Molladt\",\"doi\":\"10.1109/ICICT.2007.375398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a speaker identification system using cepstral based speech features with discrete hidden Markov model (DHMM). The speaker features represented by the speech signal are potentially characterized by the cepstral coefficients. The commonly used cepstral based features; mel-frequency cepstral coefficient (MFCC), linear predictive cepstral coefficient (LPCC) and real cepstral coefficient (RCC) are employed with DHMM in the speaker identification system. The performances of the proposed method are compared with respect to each of the three feature spaces. The experimental results show that the identification accuracy with MFCC is superior to both of LPCC and RCC.\",\"PeriodicalId\":206443,\"journal\":{\"name\":\"2007 International Conference on Information and Communication Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Information and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICT.2007.375398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT.2007.375398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

提出了一种基于倒谱特征的离散隐马尔可夫模型的说话人识别系统。语音信号所代表的说话人特征可能由倒谱系数表征。常用的以倒侧为基础的特征;将mel-frequency倒谱系数(MFCC)、线性预测倒谱系数(LPCC)和真实倒谱系数(RCC)与DHMM结合应用于说话人识别系统中。在三个特征空间上比较了所提方法的性能。实验结果表明,MFCC的识别精度优于LPCC和RCC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speaker Identification Using Cepstral Based Features and Discrete Hidden Markov Model
This paper presents a speaker identification system using cepstral based speech features with discrete hidden Markov model (DHMM). The speaker features represented by the speech signal are potentially characterized by the cepstral coefficients. The commonly used cepstral based features; mel-frequency cepstral coefficient (MFCC), linear predictive cepstral coefficient (LPCC) and real cepstral coefficient (RCC) are employed with DHMM in the speaker identification system. The performances of the proposed method are compared with respect to each of the three feature spaces. The experimental results show that the identification accuracy with MFCC is superior to both of LPCC and RCC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信